- Award ID(s):
- 1731824
- Publication Date:
- NSF-PAR ID:
- 10309881
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Sponsoring Org:
- National Science Foundation
More Like this
-
Josephson Traveling Wave Parametric Amplifiers (J-TWPAs) are promising platforms for realizing broadband quantum-limited amplification of microwave signals. However, substantial gain in such systems is attainable only when strict constraints on phase matching of the signal, idler and pump waves are satisfied -- this is rendered particularly challenging in the presence of nonlinear effects, such as self- and cross-phase modulation, which scale with the intensity of propagating signals. In this work, we present a simple J-TWPA design based on left-handed (negative-index) nonlinear Josephson metamaterial, which realizes autonomous phase matching without the need for any complicated circuit or dispersion engineering. The resultant efficiency of four-wave mixing process can implement gains in excess of 20 dB over few GHz bandwidths with much shorter lines than previous implementations. Furthermore, the autonomous nature of phase matching considerably simplifies the J-TWPA design than previous implementations based on right-handed (positive index) Josephson metamaterials, making the proposed architecture particularly appealing from a fabrication perspective. The left-handed JTL introduced here constitutes a new modality in distributed Josephson circuits, and forms a crucial piece of the unified framework that can be used to inform the optimal design and operation of broadband microwave amplifiers.
-
We propose an on-chip triply resonant electro-optic modulator architecture for RF-to-optical signal conversion and provide a detailed theoretical analysis of the optimal “circuit-level” device geometries and their performance limits. The designs maximize the RF-optical conversion efficiency through simultaneous resonant enhancement of the RF drive signal, a continuous-wave (CW) optical pump, and the generated optical sideband. The optical pump and sideband are resonantly enhanced in respective supermodes of a two-coupled-cavity optical resonator system, while the RF signal can be enhanced in addition by an LC circuit formed by capacitances of the optical resonator active regions and (integrated) matching inductors. We show that such designs can offer 15-50 dB improvement in conversion efficiency over conventional microring modulators. In the proposed configurations, the photon lifetime (resonance linewidth) limits the instantaneous RF bandwidth of the electro-optic response but does not limit its central RF frequency. The latter is set by the coupling strength between the two coupled cavities and is not subject to the photon lifetime constraint inherent to conventional singly resonant microring modulators. This feature enables efficient operation at high RF carrier frequencies without a reduction in efficiency commonly associated with the photon lifetime limit and accounts for 10-30 dB of the totalmore »
-
Acoustic devices have played a major role in telecommunications for decades as the leading technology for filtering in RF and microwave frequencies. While filter requirements for insertion loss and bandwidth become more stringent, more functionality is desired for many applications to improve overall system level performance. For instance, a filter with non-reciprocal transmission can minimize losses due to mismatch and protect the source from reflections while also performing its filtering duties. A device such as this one was originally researched by scientists decades ago. These devices were based on the acoustoelectric effect where surface acoustic waves (SAW) traveling in the same direction are as drift carriers in a nearby semiconductor are amplified. While several experiments were successfully demonstrated in [1], [2], [3]. these devices suffered from extremely high operating electric fields and noise figure [4], [5]. In the past few years, new techniques have been developed for implementing non-reciprocal devices such as isolators and circulators without utilizing magnetic materials [6], [7], [8], [9]. The most popular technique has been spatio-temporal modulation (STM) where commutated clock signals synchronized with delay elements result in non-reciprocal transmission through the network. STM has also been adapted by researchers to create non-reciprocal filters. The workmore »
-
This work presents a proof-of-concept demonstration of a novel inductive transducer, the femtoMag, that can be integrated with a lateral-flow assay (LFA) to provide detection and quantification of molecular biomarkers. The femtoMag transducer is manufactured using a low-cost printed circuit board (PCB) technology and can be controlled by relatively inexpensive electronics. It allows rapid high-precision quantification of the number (or amount) of superparamagnetic nanoparticle reporters along the length of an LFA test strip. It has a detection limit of 10−10 emu, which is equivalent to detecting 4 ng of superparamagnetic iron oxide (Fe3O4) nanoparticles. The femtoMag was used to quantify the hCG pregnancy hormone by quantifying the number of 200 nm magnetic reporters (superparamagnetic Fe3O4 nanoparticles embedded into a polymer matrix) immuno-captured within the test line of the LFA strip. A sensitivity of 100 pg/mL has been demonstrated. Upon further design and control electronics improvements, the sensitivity is projected to be better than 10 pg/mL. Analysis suggests that an average of 109 hCG molecules are needed to specifically bind 107 nanoparticles in the test line. The ratio of the number of hCG molecules in the sample to the number of reporters in the test line increases monotonically from 20 tomore »
-
This article presents a method to monitor corrosion remotely, based on highly nonlinear solitary waves, which are compact and nondispersive. In the study presented in this article, two types of solitary wave transducers were used to monitor accelerated localized corrosion on a steel plate. The first type consists of a chain of spherical particles surmounted by a commercial solenoid wired to, and controlled by, a data acquisition system used to lift and release the first particle of the chain and induce the mechanical impacts and stress waves in the chain. The chain included a piezoelectric wafer disk, also wired to the same data acquisition system, to sense, digitize, and store the propagating waves for post-processing. The second type of transducer was identical to the first one but the data acquisition system was replaced by a wireless node that communicated with a mobile device using a Bluetooth connection. Eight transducers were used to monitor the plate for over a week to detect the onset and progression of localized corrosion. Corrosion detection was performed by extracting a few features from the time waveforms and feeding these features to an outlier analysis algorithm based on the Mahalanobis distance. The results of the experimentmore »