skip to main content


Title: Maternal death and offspring fitness in multiple wild primates
Primate offspring often depend on their mothers well beyond the age of weaning, and offspring that experience maternal death in early life can suffer substantial reductions in fitness across the life span. Here, we leverage data from eight wild primate populations (seven species) to examine two underappreciated pathways linking early maternal death and offspring fitness that are distinct from direct effects of orphaning on offspring survival. First, we show that, for five of the seven species, offspring face reduced survival during the years immediately preceding maternal death, while the mother is still alive. Second, we identify an intergenerational effect of early maternal loss in three species (muriquis, baboons, and blue monkeys), such that early maternal death experienced in one generation leads to reduced offspring survival in the next. Our results have important implications for the evolution of slow life histories in primates, as they suggest that maternal condition and survival are more important for offspring fitness than previously realized.  more » « less
Award ID(s):
1826215 1638428
NSF-PAR ID:
10309928
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
1
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Traits that reflect the amount of energy allocated to offspring by mothers, such as infant body mass, are predicted to have long‐lasting effects on offspring fitness. In very long‐lived species, such as anthropoid primates, where long‐lasting and obligate parental care is required for successful recruitment of offspring, there are few studies on the fitness implications of low body mass among infants.

    Using body mass data collected from 253 free‐ranging rhesus macaqueMacaca mulattainfants on Cayo Santiago, Puerto Rico, we examined if lower infant body mass predicts lower chance of survival through to reproductive maturation (4th year of life). We also used data on inter‐birth intervals and suckling behaviours to determine whether the duration of maternal care was adjusted to infant body mass.

    Rhesus macaque infants experienced on average 5% reduced hazard of death for an increase in body mass of 0.1SD(~100 g) above the mean within their age–sex class. The positive association between body mass and early life survival was most pronounced in the 1st year of life.

    Infant body mass tended to be lower if mothers were young or old, but the link between infant body mass and early life survival remained after controlling for maternal age. This finding suggests that maternal effects on early life survival such as maternal age may act through their influence on infant body mass.

    Mothers of heavier infants were less likely to be delayed in subsequent reproduction, but the estimated association slightly overlapped with zero. The timing of the last week of suckling did not differ by infant body mass.

    Using infant body mass data that has been rarely available from free‐ranging primates, our study provides comparative evidence to strengthen the existing body of literature on the fitness implications of variation in infant body mass.

     
    more » « less
  2. null (Ed.)
    Despite the remarkable expansion of laboratory studies, robust estimates of single species CO 2 sensitivities remain largely elusive. We conducted a meta-analysis of 20 CO 2 exposure experiments conducted over 6 years on offspring of wild Atlantic silversides ( Menidia menidia ) to robustly constrain CO 2 effects on early life survival and growth. We conclude that early stages of this species are generally tolerant to CO 2 levels of approximately 2000 µatm, likely because they already experience these conditions on diel to seasonal timescales. Still, high CO 2 conditions measurably reduced fitness in this species by significantly decreasing average embryo survival (−9%) and embryo+larval survival (−13%). Survival traits had much larger coefficients of variation (greater than 30%) than larval length or growth (3–11%). CO 2 sensitivities varied seasonally and were highest at the beginning and end of the species' spawning season (April–July), likely due to the combined effects of transgenerational plasticity and maternal provisioning. Our analyses suggest that serial experimentation is a powerful, yet underused tool for robustly estimating small but true CO 2 effects in fish early life stages. 
    more » « less
  3. Abstract

    Phenotypic variation within populations is influenced by the environment via plasticity and natural selection. How phenotypes respond to the environment can vary among traits, populations and life stages in ways that can influence fitness.

    Plastic responses during early development are particularly important because they can affect components of fitness throughout an individual's life. Consequently, how natural selection shapes developmental plasticity could be influenced by fitness consequences across different life stages. Moreover, spatial variation in selection pressures could generate differences in plastic responses among populations.

    To gain insight into sources of variation in phenotypes and survival, we used a laboratory egg incubation experiment using brown anole lizardsAnolis sagreifrom mainland (ancestral) and island (descendent) populations, combined with a mark–release–recapture experiment in the field. Our study was designed to (a) quantify the effects developmental temperature on embryo development and offspring morphology, (b) assess how developmental temperature influences offspring survival across different life stages and (c) quantify how thermal reaction norms vary among ancestral and descendant populations.

    Developmental temperature influenced offspring morphology, but thermal reaction norms of embryos showed little variation among populations. Developmental temperature influenced offspring survival, but the patterns differed between embryo and hatchling stages; the optimal temperature for embryos was about 5℃ lower than that for hatchlings. High temperatures were thermally stressful to embryos, but they reduced incubation duration and led to early hatching. In turn, earlier hatching increased the probability of survival to adulthood. Moreover, the effect of developmental temperature on hatchling survival was most pronounced for offspring that hatched late in the season.

    The difference in optimal developmental temperatures between life stages may be driven by physiological tolerance for embryos and by ecological factors for hatchlings. Moreover, the fitness consequences of the developmental environment depend on the phenology of hatching. Overall, these results highlight how the developmental environment can differentially affect fitness across life stages and show that temporal thermal heterogeneity can influence survival of embryos, but the consequences on post‐hatching stages may vary at different times of the season.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. Social rank is a significant determinant of fitness in a variety of species. The importance of social rank suggests that the process by which juveniles come to establish their position in the social hierarchy is a critical component of development. Here, we use the highly predictable process of rank acquisition in spotted hyenas to study the consequences of variation in rank acquisition in early life. In spotted hyenas, rank is ‘inherited’ through a learning process called ‘maternal rank inheritance.’ This pattern is very consistent: approximately 80% of juveniles acquire the exact rank expected under the rules of maternal rank inheritance. The predictable nature of rank acquisition in these societies allows the process of rank acquisition to be studied independently from the ultimate rank that each juvenile attains. In this study, we use Elo-deviance scores, a novel application of the Elo-rating method, to calculate each juvenile's deviation from the expected pattern of maternal rank inheritance during development. Despite variability in rank acquisition among juveniles, most of these juveniles come to attain the exact rank expected of them according to the rules of maternal rank inheritance. Nevertheless, we find that transient variation in rank acquisition in early life is associated with long-term fitness consequences for these individuals: juveniles ‘underperforming’ their expected ranks show reduced survival and lower lifetime reproductive success than better-performing peers, and this relationship is independent of both maternal rank and rank achieved in adulthood. We also find that multiple sources of early life adversity have cumulative, but not compounding, effects on fitness. Future work is needed to determine if variation in rank acquisition directly affects fitness, or if some other variable, such as maternal investment or juvenile condition, causes variation in both of these outcomes. 
    more » « less
  5. Abstract

    Seasonal changes in reproduction have been described for many taxa. As reproductive seasons progress, females often shift from greater energetic investment in many small offspring towards investing less total energy into fewer, better provisioned (i.e. larger) offspring. The underlying causes of this pattern have not been assessed in many systems.

    Two primary hypotheses have been proposed to explain these patterns. The first is an adaptive hypothesis from life‐history theory: early offspring have a survival advantage over those produced later. Accordingly, selection favours females that invest in offspring quantity early in the season and offspring quality later. The second hypothesis suggests these patterns are not intrinsic but result from passive responses to seasonal changes in the environment experienced by reproducing females (i.e. maternal environment).

    To disentangle the causes underlying this pattern, which has been reported in brown anole lizards (Anolis sagrei), we performed complementary field and laboratory studies. The laboratory study carefully controlled maternal environments and quantified reproductive patterns throughout the reproductive season for each female. The field study measured similar metrics from free ranging lizards across an entire reproductive season.

    In the laboratory, females increased relative effort per offspring as the reproductive season progressed; smaller eggs were laid earlier, larger eggs were laid later. Moreover, we observed significant among‐individual variation in seasonal changes in reproduction, which is necessary for traits to evolve via natural selection. Because these patterns consistently emerge under controlled laboratory conditions, they likely represent an intrinsic and potentially adaptive adjustment of reproductive effort as predicted by life‐history theory.

    The field study revealed similar trends, further suggesting that intrinsic patterns observed in the laboratory are strong enough to persist despite the environmental variability that characterizes natural habitats. The observed patterns are indicative of an adaptive seasonal shift in parental investment in response to a deteriorating offspring environment: allocating greater resources to late‐produced offspring likely enhances maternal fitness.

     
    more » « less