skip to main content

Title: Fairness of Exposure in Stochastic Bandits
Contextual bandit algorithms have become widely used for recommendation in online systems (e.g. marketplaces, music streaming, news), where they now wield substantial influence on which items get shown to users. This raises questions of fairness to the items — and to the sellers, artists, and writers that benefit from this exposure. We argue that the conventional bandit formulation can lead to an undesirable and unfair winner-takes-all allocation of exposure. To remedy this problem, we propose a new bandit objective that guarantees merit-based fairness of exposure to the items while optimizing utility to the users. We formulate fairness regret and reward regret in this setting and present algorithms for both stochastic multi-armed bandits and stochastic linear bandits. We prove that the algorithms achieve sublinear fairness regret and reward regret. Beyond the theoretical analysis, we also provide empirical evidence that these algorithms can allocate exposure to different arms effectively.
Authors:
; ; ;
Award ID(s):
2008139
Publication Date:
NSF-PAR ID:
10309930
Journal Name:
International Conference on Machine Learning
Volume:
139
Sponsoring Org:
National Science Foundation
More Like this
  1. The dueling bandits problem has received a lot of attention in recent years due to its applications in recommendation systems and information retrieval. However, due to the prevalence of malicious users in these systems, it is becoming increasingly important to design dueling bandit algorithms that are robust to corruptions introduced by these malicious users. In this paper we study dueling bandits in the presence of an adversary that can corrupt some of the feedback received by the learner. We propose an algorithm for this problem that is agnostic to the amount of corruption introduced by the adversary: its regret degradesmore »gracefully with the amount of corruption, and in case of no corruption, it essentially matches the optimal regret bounds achievable in the purely stochastic dueling bandits setting.« less
  2. We study a nonparametric contextual bandit problem in which the expected reward functions belong to a Hölder class with smoothness parameter β. We show how this interpolates between two extremes that were previously studied in isolation: nondifferentiable bandits (β at most 1), with which rate-optimal regret is achieved by running separate noncontextual bandits in different context regions, and parametric-response bandits (infinite [Formula: see text]), with which rate-optimal regret can be achieved with minimal or no exploration because of infinite extrapolatability. We develop a novel algorithm that carefully adjusts to all smoothness settings, and we prove its regret is rate-optimal bymore »establishing matching upper and lower bounds, recovering the existing results at the two extremes. In this sense, our work bridges the gap between the existing literature on parametric and nondifferentiable contextual bandit problems and between bandit algorithms that exclusively use global or local information, shedding light on the crucial interplay of complexity and regret in contextual bandits.« less
  3. We consider the bandit problem of selecting K out of N arms at each time step. The joint reward can be a non-linear function of the rewards of the selected individual arms. The direct use of a multi-armed bandit algorithm requires choosing among all possible combinations, making the action space large. To simplify the problem, existing works on combinatorial bandits typically assume feedback as a linear function of individual rewards. In this paper, we prove the lower bound for top-K subset selection with bandit feedback with possibly correlated rewards. We present a novel algorithm for the combinatorial setting without usingmore »individual arm feedback or requiring linearity of the reward function. Additionally, our algorithm works on correlated rewards of individual arms. Our algorithm, aDaptive Accept RejecT (DART), sequentially finds good arms and eliminates bad arms based on confidence bounds. DART is computationally efficient and uses storage linear in N. Further, DART achieves a regret bound of Õ(K√KNT) for a time horizon T, which matches the lower bound in bandit feedback up to a factor of √log 2NT. When applied to the problem of cross-selling optimization and maximizing the mean of individual rewards, the performance of the proposed algorithm surpasses that of state-of-the-art algorithms. We also show that DART significantly outperforms existing methods for both linear and non-linear joint reward environments.« less
  4. This paper studies adversarial bandits with corruptions. In the basic adversarial bandit setting, the reward of arms is predetermined by an adversary who is oblivious to the learner’s policy. In this paper, we consider an extended setting in which an attacker sits in-between the environment and the learner, and is endowed with a limited budget to corrupt the reward of the selected arm. We have two main results. First, we derive a lower bound on the regret of any bandit algorithm that is aware of the budget of the attacker. Also, for budget-agnostic algorithms, we characterize an impossibility result demonstratingmore »that even when the attacker has a sublinear budget, i.e., a budget growing sublinearly with time horizon T, they fail to achieve a sublinear regret. Second, we propose ExpRb, a bandit algorithm that incorporates a biased estimator and a robustness parameter to deal with corruption. We characterize the regret of ExpRb as a function of the corruption budget and show that for the case of a known corruption budget, the regret of ExpRb is tight.« less
  5. Banerjee, Arindam ; Fukumizu, Kenji (Ed.)
    We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of multiple rounds is maximum, and each one of them has an expected cost below a certain threshold. We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB), and prove a sublinear bound on its regret that is inversely proportional to the difference between the constraint threshold and the cost of a known feasible action. Our algorithm balances exploration and constraint satisfaction using a novel idea thatmore »scales the radii of the reward and cost confidence sets with different scaling factors. We further specialize our results to multi-armed bandits and propose a computationally efficient algorithm for this setting and prove a a regret bound that is better than simply casting multi-armed bandits as an instance of linear bandits and using the regret bound of OPLB. We also prove a lower-bound for the problem studied in the paper and provide simulations to validate our theoretical results. Finally, we show how our algorithm and analysis can be extended to multiple constraints and to the case when the cost of the feasible action is unknown.« less