skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Instance-optimal PAC Algorithms for Contextual Bandits
In the stochastic contextual bandit setting, regret-minimizing algorithms have been extensively researched, but their instance-minimizing best-arm identification counterparts remain seldom studied. In this work, we focus on the stochastic bandit problem in the (ǫ, δ)-PAC setting: given a policy class Π the goal of the learner is to return a policy π ∈ Π whose expected reward is within ǫ of the optimal policy with probability greater than 1 − δ. We characterize the first instance-dependent PAC sample complexity of contextual bandits through a quantity ρΠ, and provide matching upper and lower bounds in terms of ρΠ for the agnostic and linear contextual best-arm identification settings. We show that no algorithm can be simultaneously minimax-optimal for regret minimization and instance-dependent PAC for best-arm identification. Our main result is a new instance-optimal and computationally efficient algorithm that relies on a polynomial number of calls to an argmax oracle.  more » « less
Award ID(s):
2141511 1907907
PAR ID:
10415290
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A.
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While distributional reinforcement learning (DistRL) has been empirically effective, the question of when and why it is better than vanilla, non-distributional RL has remained unanswered. This paper explains the benefits of DistRL through the lens of small-loss bounds, which are instance-dependent bounds that scale with optimal achievable cost. Particularly, our bounds converge much faster than those from non-distributional approaches if the optimal cost is small. As warmup, we propose a distributional contextual bandit (DistCB) algorithm, which we show enjoys small-loss regret bounds and empirically outperforms the state-of-the-art on three real-world tasks. In online RL, we propose a DistRL algorithm that constructs confidence sets using maximum likelihood estimation. We prove that our algorithm enjoys novel small-loss PAC bounds in low-rank MDPs. As part of our analysis, we introduce the l1 distributional eluder dimension which may be of independent interest. Then, in offline RL, we show that pessimistic DistRL enjoys small-loss PAC bounds that are novel to the offline setting and are more robust to bad single-policy coverage. 
    more » « less
  2. We study a regret minimization problem with the existence of multiple best/near-optimal arms in the multi-armed bandit setting. We consider the case when the number of arms/actions is comparable or much larger than the time horizon, and make no assumptions about the structure of the bandit instance. Our goal is to design algorithms that can automatically adapt to the unknown hardness of the problem, i.e., the number of best arms. Our setting captures many modern applications of bandit algorithms where the action space is enormous and the information about the underlying instance/structure is unavailable. We first propose an adaptive algorithm that is agnostic to the hardness level and theoretically derive its regret bound. We then prove a lower bound for our problem setting, which indicates: (1) no algorithm can be minimax optimal simultaneously over all hardness levels; and (2) our algorithm achieves a rate function that is Pareto optimal. With additional knowledge of the expected reward of the best arm, we propose another adaptive algorithm that is minimax optimal, up to polylog factors, over all hardness levels. Experimental results confirm our theoretical guarantees and show advantages of our algorithms over the previous state-of-the-art. 
    more » « less
  3. We study the problem of corralling stochastic bandit algorithms, that is combining multiple bandit algorithms designed for a stochastic environment, with the goal of devising a corralling algorithm that performs almost as well as the best base algorithm. We give two general algorithms for this setting, which we show benefit from favorable regret guarantees. We show that the regret of the corralling algorithms is no worse than that of the best algorithm containing the arm with the highest reward, and depends on the gap between the highest reward and other rewards. 
    more » « less
  4. Contextual bandit is a classic multi-armed bandit setting, where side information (i.e., context) is available before arm selection. A standard assumption is that exact contexts are perfectly known prior to arm selection and only single feedback is returned. In this work, we focus on multi-feedback bandit learning with probabilistic contexts, where a bundle of contexts are revealed to the agent along with their corresponding probabilities at the beginning of each round. This models such scenarios as where contexts are drawn from the probability output of a neural network and the reward function is jointly determined by multiple feedback signals. We propose a kernelized learning algorithm based on upper confidence bound to choose the optimal arm in reproducing kernel Hilbert space for each context bundle. Moreover, we theoretically establish an upper bound on the cumulative regret with respect to an oracle that knows the optimal arm given probabilistic contexts, and show that the bound grows sublinearly with time. Our simula- tion on machine learning model recommendation further validates the sub-linearity of our cumulative regret and demonstrates that our algorithm outper- forms the approach that selects arms based on the most probable context. 
    more » « less
  5. This paper studies bandit problems where an agent has access to offline data that might be utilized to potentially improve the estimation of each arm’s reward distribution. A major obstacle in this setting is the existence of compound biases from the observational data. Ignoring these biases and blindly fitting a model with the biased data could even negatively affect the online learning phase. In this work, we formulate this problem from a causal perspective. First, we categorize the biases into confounding bias and selection bias based on the causal structure they imply. Next, we extract the causal bound for each arm that is robust towards compound biases from biased observational data. The derived bounds contain theground truth mean reward and can effectively guide the bandit agent to learn a nearly-optimal decision policy. We also conduct regret analysis in both contextual and non-contextual bandit settings and show that prior causal bounds could helpconsistently reduce the asymptotic regret. 
    more » « less