skip to main content


Title: Sporadic Cubic Torsion
Let K be a number field, and let E/K be an elliptic curve over K. The Mordell–Weil theorem asserts that the K-rational points E(K) of E form a finitely generated abelian group. In this work, we complete the classification of the finite groups which appear as the torsion subgroup of E ( K ) for K a cubic number field. To do so, we determine the cubic points on the modular curves X1(N) for N = 21,22,24,25,26,28,30,32,33,35,36,39,45,65,121. As part of our analysis, we determine the complete lists of N for which J0(N), J1(N), and J1(2,2N) have rank 0. We also provide evidence to a generalized version of a conjecture of Conrad, Edixhoven, and Stein by proving that the torsion on J1(N)(Q) is generated by Galois-orbits of cusps of X1(N) for N ≤55, N ̸=54.  more » « less
Award ID(s):
1618657
NSF-PAR ID:
10310036
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MSP (Algebra & Number Theory)
Date Published:
Journal Name:
Algebra and number theory
Volume:
15
Issue:
7
ISSN:
1112-265X
Subject(s) / Keyword(s):
["modular curves","elliptic curves","finitely many cubic points"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let L be a number field and let E ⊂ OL∗ be any subgroup of the units of L. If rankZ(E) = 1, Lehmer’s conjecture predicts that the height of any non-torsion element of E is bounded below by an absolute positive constant. If rankZ(E) = rankZ(OL∗), Zimmert proved a lower bound on the regulator of E which grows exponentially with [L : Q]. By sharpening a 1997 conjecture of Daniel Bertrand’s, Fernando Rodriguez Villegas “interpolated” between these two extremes of rank with a new higher-dimensional version of Lehmer’s conjecture. Here we prove a high-rank case of the Bertrand-Rodriguez Villegas conjecture. Namely, it holds if L contains a subfield K for which [L : K] ≫ [K : Q] and E contains the kernel of the norm map from OL∗ to OK∗ . 
    more » « less
  2. Abstract

    Let$$X\rightarrow {{\mathbb {P}}}^1$$XP1be an elliptically fiberedK3 surface, admitting a sequence$$\omega _{i}$$ωiof Ricci-flat metrics collapsing the fibers. LetVbe a holomorphicSU(n) bundle overX, stable with respect to$$\omega _i$$ωi. Given the corresponding sequence$$\Xi _i$$Ξiof Hermitian–Yang–Mills connections onV, we prove that, ifEis a generic fiber, the restricted sequence$$\Xi _i|_{E}$$Ξi|Econverges to a flat connection$$A_0$$A0. Furthermore, if the restriction$$V|_E$$V|Eis of the form$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j-0)$$j=1nOE(qj-0)forndistinct points$$q_j\in E$$qjE, then these points uniquely determine$$A_0$$A0.

     
    more » « less
  3. Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ⁢ ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ⁢ ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ⁢ ( a t ) - h D ⁢ ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ⁢ ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ⁢ ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ⁢ ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ⁢ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number. 
    more » « less
  4. null (Ed.)
    Abstract Let Xk denote the number of k-term arithmetic progressions in a random subset of $\mathbb{Z}/N\mathbb{Z}$ or $\{1, \dots , N\}$ where every element is included independently with probability p. We determine the asymptotics of $\log \mathbb{P}\big (X_{k} \ge \big (1+\delta \big ) \mathbb{E} X_{k}\big )$ (also known as the large deviation rate) where p → 0 with $p \ge N^{-c_{k}}$ for some constant ck > 0, which answers a question of Chatterjee and Dembo. The proofs rely on the recent nonlinear large deviation principle of Eldan, which improved on earlier results of Chatterjee and Dembo. Our results complement those of Warnke, who used completely different methods to estimate, for the full range of p, the large deviation rate up to a constant factor. 
    more » « less
  5. We study the rank of a random n × m matrix An, m; k with entries from GF(2), and exactly k unit entries in each column, the other entries being zero. The columns are chosen independently and uniformly at random from the set of all (nk) such columns. We obtain an asymptotically correct estimate for the rank as a function of the number of columns m in terms of c, n, k, and where m = cn/k. The matrix An, m; k forms the vertex-edge incidence matrix of a k-uniform random hypergraph H. The rank of An, m; k can be expressed as follows. Let |C2| be the number of vertices of the 2-core of H, and | E (C2)| the number of edges. Let m* be the value of m for which |C2| = |E(C2)|. Then w.h.p. for m < m* the rank of An, m; k is asymptotic to m, and for m ≥ m* the rank is asymptotic to m – |E(C2)| + |C2|. In addition, assign i.i.d. U[0, 1] weights Xi, i ∊ 1, 2, … m to the columns, and define the weight of a set of columns S as X(S) = ∑j∊S Xj. Define a basis as a set of n – 1 (k even) linearly independent columns. We obtain an asymptotically correct estimate for the minimum weight basis. This generalises the well-known result of Frieze [On the value of a random minimum spanning tree problem, Discrete Applied Mathematics, (1985)] that, for k = 2, the expected length of a minimum weight spanning tree tends to ζ(3) ∼ 1.202. 
    more » « less