skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Bertrand's and Rodriguez Villegas' higher-dimensional Lehmer conjecture, with an appendix by Gernando Rodriguez Villegas
Let L be a number field and let E ⊂ OL∗ be any subgroup of the units of L. If rankZ(E) = 1, Lehmer’s conjecture predicts that the height of any non-torsion element of E is bounded below by an absolute positive constant. If rankZ(E) = rankZ(OL∗), Zimmert proved a lower bound on the regulator of E which grows exponentially with [L : Q]. By sharpening a 1997 conjecture of Daniel Bertrand’s, Fernando Rodriguez Villegas “interpolated” between these two extremes of rank with a new higher-dimensional version of Lehmer’s conjecture. Here we prove a high-rank case of the Bertrand-Rodriguez Villegas conjecture. Namely, it holds if L contains a subfield K for which [L : K] ≫ [K : Q] and E contains the kernel of the norm map from OL∗ to OK∗ .  more » « less
Award ID(s):
1701785
PAR ID:
10382893
Author(s) / Creator(s):
Date Published:
Journal Name:
Pacific journal of mathematics
ISSN:
0030-8730
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let $$E$$ be an elliptic curve defined over $${\mathbb{Q}}$$ of conductor $$N$$, $$p$$ an odd prime of good ordinary reduction such that $E[p]$ is an irreducible Galois module, and $$K$$ an imaginary quadratic field with all primes dividing $Np$ split. We prove Iwasawa main conjectures for the $${\mathbb{Z}}_{p}$$-cyclotomic and $${\mathbb{Z}}_{p}$$-anticyclotomic deformations of $$E$$ over $${\mathbb{Q}}$$ and $K,$ respectively, dispensing with any of the ramification hypotheses on $E[p]$ in previous works. The strategy employs base change and the two-variable zeta element associated to $$E$$ over $$K$$, via which the sought after main conjectures are deduced from Wan’s divisibility towards a three-variable main conjecture for $$E$$ over a quartic CM field containing $$K$$ and certain Euler system divisibilities. As an application, we prove cases of the two-variable main conjecture for $$E$$ over $$K$$. The aforementioned one-variable main conjectures imply the $$p$$-part of the conjectural Birch and Swinnerton-Dyer formula for $$E$$ if $$\operatorname{ord}_{s=1}L(E,s)\leq 1$$. They are also an ingredient in the proof of Kolyvagin’s conjecture and its cyclotomic variant in our joint work with Grossi [1]. 
    more » « less
  2. null (Ed.)
    Abstract Let $$1\leq p \leq q <\infty $$ and let $$w \in \mathbb{C}$$. Weissler conjectured that the Hermite operator $$e^{w\Delta }$$ is bounded as an operator from $$L^{p}$$ to $$L^{q}$$ on the Hamming cube $$\{-1,1\}^{n}$$ with the norm bound independent of $$n$$ if and only if $$\begin{align*} |p-2-e^{2w}(q-2)|\leq p-|e^{2w}|q. \end{align*}$$It was proved in [ 1], [ 2], and [ 17] in all cases except $$2<p\leq q <3$$ and $$3/2<p\leq q <2$$, which stood open until now. The goal of this paper is to give a full proof of Weissler’s conjecture in the case $p=q$. Several applications will be presented. 
    more » « less
  3. Let K be a number field, and let E/K be an elliptic curve over K. The Mordell–Weil theorem asserts that the K-rational points E(K) of E form a finitely generated abelian group. In this work, we complete the classification of the finite groups which appear as the torsion subgroup of E ( K ) for K a cubic number field. To do so, we determine the cubic points on the modular curves X1(N) for N = 21,22,24,25,26,28,30,32,33,35,36,39,45,65,121. As part of our analysis, we determine the complete lists of N for which J0(N), J1(N), and J1(2,2N) have rank 0. We also provide evidence to a generalized version of a conjecture of Conrad, Edixhoven, and Stein by proving that the torsion on J1(N)(Q) is generated by Galois-orbits of cusps of X1(N) for N ≤55, N ̸=54. 
    more » « less
  4. Abstract Let $$E/\mathbf {Q}$$ be an elliptic curve and $p>3$ be a good ordinary prime for E and assume that $L(E,1)=0$ with root number $+1$ (so $$\text {ord}_{s=1}L(E,s)\geqslant 2$$ ). A construction of Darmon–Rotger attaches to E and an auxiliary weight 1 cuspidal eigenform g such that $$L(E,\text {ad}^{0}(g),1)\neq 0$$ , a Selmer class $$\kappa _{p}\in \text {Sel}(\mathbf {Q},V_{p}E)$$ , and they conjectured the equivalence $$ \begin{align*} \kappa_{p}\neq 0\quad\Longleftrightarrow\quad{\textrm{dim}}_{{\mathbf{Q}}_{p}}\textrm{Sel}(\mathbf{Q},V_{p}E)=2. \end{align*} $$ In this article, we prove the first cases on Darmon–Rotger’s conjecture when the auxiliary eigenform g has complex multiplication. In particular, this provides a new construction of nontrivial Selmer classes for elliptic curves of rank 2. 
    more » « less
  5. Given a finite point set P in the plane, a subset S⊆P is called an island in P if conv(S) ⋂ P = S . We say that S ⊂ P is a visible island if the points in S are pairwise visible and S is an island in P. The famous Big-line Big-clique Conjecture states that for any k ≥ 3 and l ≥ 4, there is an integer n = n(k, l ), such that every finite set of at least n points in the plane contains l collinear points or k pairwise visible points. In this paper, we show that this conjecture is false for visible islands, by replacing each point in a Horton set by a triple of collinear points. Hence, there are arbitrarily large finite point sets in the plane with no 4 collinear members and no visible island of size 13. 
    more » « less