skip to main content


Title: The rate and extent of wind-gap migration regulated by tributary confluences and avulsions
Abstract. The location of drainage divides sets the distribution of discharge, erosion, and sediment flux between neighboring basins and may shift through time in response to changing tectonic and climatic conditions. Major divides commonly coincide with ridgelines, where the drainage area is small and increases gradually downstream. In such settings, divide migration is attributed to slope imbalance across the divide that induces erosion rate gradients. However, in some tectonically affected regions, low-relief divides, which are also called wind gaps, abound in elongated valleys whose drainage area distribution is set by the topology of large, potentially avulsing side tributaries. In this geometry, distinct dynamics and rates of along-valley wind-gap migration are expected, but this process remains largely unexplored. Inspired by field observations, we investigate along-valley wind-gap migration by simulating the evolution of synthetic and natural landscapes, and we show that confluences with large side tributaries influence migration rate and extent. Such confluences facilitate stable wind-gap locations that deviate from intuitive expectations based on symmetry considerations. Avulsions of side tributaries can perturb stable wind-gap positions, and avulsion frequency governs the velocity of wind-gap migration. Overall, our results suggest that tributaries and their avulsions may play a critical role in setting the rate and extent of wind-gap migration along valleys and thus the timescale of landscape adjustment to tectonic and climatic changes across some of the tectonically most affected regions of Earth, where wind gaps are common.  more » « less
Award ID(s):
1946253
NSF-PAR ID:
10310128
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
9
Issue:
4
ISSN:
2196-632X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The width of valleys and channels affects the hydrology, ecology,and geomorphic functionality of drainage networks. In many studies, thewidth of valleys and/or channels (W) is estimated as a power-law function ofthe drainage area (A), W=kcAd. However, in fluvial systemsthat experience drainage reorganization, abrupt changes in drainage areadistribution can result in valley or channel widths that are disproportionalto their drainage areas. Such disproportionality may be more distinguishedin valleys than in channels due to a longer adjustment timescale forvalleys. Therefore, the valley width–area scaling in reorganized drainagesis expected to deviate from that of drainages that did not experiencereorganization. To explore the effect of reorganization on valley width–drainage areascaling, we studied 12 valley sections in the Negev desert, Israel,categorized into undisturbed, beheaded, and reversed valleys. We found thatthe values of the drainage area exponents, d, are lower in the beheadedvalleys relative to undisturbed valleys but remain positive. Reversedvalleys, in contrast, are characterized by negative d exponents, indicatingvalley narrowing with increasing drainage area. In the reversed category, wealso explored the independent effect of channel slope (S) through theequation W=kbAbSc, which yieldednegative and overall similar values for b and c. A detailed study in one reversed valley section shows that the valleynarrows downstream, whereas the channel widens, suggesting that, ashypothesized, the channel width adjusts faster to post-reorganizationdrainage area distribution. The adjusted narrow channel dictates the widthof formative flows in the reversed valley, which contrasts with the meaningfullywider formative flows of the beheaded valley across the divide. Thisdifference results in a step change in the unit stream power between thereversed and beheaded channels, potentially leading to a “width feedback”that promotes ongoing divide migration and reorganization. Our findings demonstrate that valley width–area scaling is a potential toolfor identifying landscapes influenced by drainage reorganization. Accountingfor reorganization-specific scaling can improve estimations of erosion ratedistributions in reorganized landscapes. 
    more » « less
  2. Abstract. Here we examine the landscape of New Zealand'sMarlborough Fault System (MFS), where the Australian and Pacific plates obliquelycollide, in order to study landscape evolution and the controls on fluvialpatterns at a long-lived plate boundary. We present maps of drainageanomalies and channel steepness, as well as an analysis of the plan-vieworientations of rivers and faults, and we find abundant evidence ofstructurally controlled drainage that we relate to a history of drainagecapture and rearrangement in response to mountain-building and strike-slipfaulting. Despite clear evidence of recent rearrangement of the western MFSdrainage network, rivers in this region still flow parallel to older faults,rather than along orthogonal traces of younger, active strike-slip faults.Such drainage patterns emphasize the importance of river entrenchment,showing that once rivers establish themselves along a structural grain,their capture or avulsion becomes difficult, even when exposed to newweakening and tectonic strain. Continued flow along older faults may alsoindicate that the younger faults have not yet generated a fault damage zonewith the material weakening needed to focus erosion and reorient rivers.Channel steepness is highest in the eastern MFS, in a zone centered on theKaikōura ranges, including within the low-elevation valleys of main stemrivers and at tributaries near the coast. This pattern is consistent with anincrease in rock uplift rate toward a subduction front that is locked on itssouthern end. Based on these results and a wealth of previous geologicstudies, we propose two broad stages of landscape evolution over the last 25 million years of orogenesis. In the eastern MFS, Miocene folding above blindthrust faults generated prominent mountain peaks and formed major transverserivers early in the plate collision history. A transition to Pliocenedextral strike-slip faulting and widespread uplift led to cycles of riverchannel offset, deflection and capture of tributaries draining across activefaults, and headward erosion and captures by major transverse rivers withinthe western MFS. We predict a similar landscape will evolve south of theHope Fault, as the locus of plate boundary deformation migrates southwardinto this region with time. 
    more » « less
  3. Abstract

    Incipient valley formation in mountainous landscapes is often associated with their presence at a regular spacing under diverse hydroclimatic forcings. Here we provide a formal linear stability theory for a landscape evolution model representing the action of tectonic uplift, diffusive soil creep, and detachment‐limited fluvial erosion. For configurations dominated by only one horizontal length scale, a single dimensionless quantity characterizes the overall system dynamics based on model parameters and boundary conditions. The stability analysis is conducted for smooth and symmetric hillslopes along a long mountain ridge to study the impact of the erosion law form on regular first‐order valley formation. The results provide the critical condition when smooth landscapes become unstable and give rise to a characteristic length scale for incipient valleys, which is related to the scaling exponents that couple fluvial erosion to the specific drainage area and the local slope. The valley spacing at first instability is uniquely related to the ratio of the scaling exponents and widens with an increase in this ratio. We find compelling evidence of sediment transport by diffusive creep and fluvial erosion coupled with the specific drainage area equation as a sufficient mechanism for first‐order valley formation. We finally show that the predictions of the linear stability analysis conform with the results of numerical simulations for different degrees of nonlinearity in the erosion law and agree well with topographic data from a natural landscape.

     
    more » « less
  4. Temporal and spatial variations of tectonic rock uplift are generally thought to be the main controls on long-term erosion rates in various landscapes. However, rivers continuously lengthen and capture drainages in strike-slip fault systems due to ongoing motion across the fault, which can induce changes in landscape forms, drainage networks, and local erosion rates. Located along the restraining bend of the San Andreas Fault, the San Bernardino Mountains provide a suitable location for assessing the influence of topographic disequilibrium from perturbations by tectonic forcing and channel reorganization on measured erosion rates. In this study, we measured 17 new basin-averaged erosion rates using cosmogenic 10Be in river sands (hereafter, 10Be-derived erosion rates) and compiled 31 10Be-derived erosion rates from previous work. We quantify the degree of topographic disequilibrium using topographic analysis by examining hillslope and channel decoupling, the areal extent of pre-uplift surface, and drainage divide asymmetry across various landscapes. Similar to previous work, we find that erosion rates generally increase from north to south across the San Bernardino Mountains, reflecting a southward increase in tectonic activity. However, a comparison between 10Be-derived erosion rates and various topographic metrics in the southern San Bernardino Mountains suggests that the presence of transient landscape features such as relict topography and drainage-divide migration may explain local variations in 10Be-derived erosion rates. Our work shows that coupled analysis of erosion rates and topographic metrics provides tools for assessing the influence of tectonic uplift and channel reorganization on landscape evolution and 10Be-derived erosion rates in an evolving strike-slip restraining bend.

     
    more » « less
  5. Abstract

    The dimensions of past ice sheets provide a record of palaeoclimate but depend on underlying topography, which evolves over geological timescales by tectonic uplift and erosional downcutting. Erosion during the Pleistocene epoch (2,580 to 11.650 thousand years ago) reduced glacier extent in some locations even as climate cooled, but whether other non-climatic influences impacted the glacial–geological record is poorly known. The Antarctic Peninsula provides an opportunity to examine this issue because of its long glacial history and preservation of remnants of a low-relief pre-glacial land surface. Here we reconstructed both palaeo-surface topography and long-wavelength variations of surface uplift for the Antarctic Peninsula by using inverse analysis that assimilates local topographic remnants with the branching structures of entire modern drainage networks. We found that the Antarctic Peninsula rose tectonically by up to 1.5 km due to dynamical support from the mantle. Glaciological models using the current climate and our palaeotopography show greatly reduced ice extent in the northern Antarctic Peninsula compared with modern, indicating that the onset of glaciation identified at offshore sites reflects tectonic uplift of the topography rather than climatic cooling. In the southern Antarctic Peninsula, however, we suggest the low-relief pre-glacial landscape supported a considerably greater ice volume than the modern mountainous topography, illustrating the influence of erosional sculpting on glaciation patterns.

     
    more » « less