skip to main content

Title: The rate and extent of wind-gap migration regulated by tributary confluences and avulsions
Abstract. The location of drainage divides sets the distribution of discharge, erosion, and sediment flux between neighboring basins and may shift through time in response to changing tectonic and climatic conditions. Major divides commonly coincide with ridgelines, where the drainage area is small and increases gradually downstream. In such settings, divide migration is attributed to slope imbalance across the divide that induces erosion rate gradients. However, in some tectonically affected regions, low-relief divides, which are also called wind gaps, abound in elongated valleys whose drainage area distribution is set by the topology of large, potentially avulsing side tributaries. In this geometry, distinct dynamics and rates of along-valley wind-gap migration are expected, but this process remains largely unexplored. Inspired by field observations, we investigate along-valley wind-gap migration by simulating the evolution of synthetic and natural landscapes, and we show that confluences with large side tributaries influence migration rate and extent. Such confluences facilitate stable wind-gap locations that deviate from intuitive expectations based on symmetry considerations. Avulsions of side tributaries can perturb stable wind-gap positions, and avulsion frequency governs the velocity of wind-gap migration. Overall, our results suggest that tributaries and their avulsions may play a critical role in setting the rate more » and extent of wind-gap migration along valleys and thus the timescale of landscape adjustment to tectonic and climatic changes across some of the tectonically most affected regions of Earth, where wind gaps are common. « less
Award ID(s):
Publication Date:
Journal Name:
Earth Surface Dynamics
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The width of valleys and channels affects the hydrology, ecology,and geomorphic functionality of drainage networks. In many studies, thewidth of valleys and/or channels (W) is estimated as a power-law function ofthe drainage area (A), W=kcAd. However, in fluvial systemsthat experience drainage reorganization, abrupt changes in drainage areadistribution can result in valley or channel widths that are disproportionalto their drainage areas. Such disproportionality may be more distinguishedin valleys than in channels due to a longer adjustment timescale forvalleys. Therefore, the valley width–area scaling in reorganized drainagesis expected to deviate from that of drainages that did not experiencereorganization. To explore the effect of reorganization on valley width–drainage areascaling, we studied 12 valley sections in the Negev desert, Israel,categorized into undisturbed, beheaded, and reversed valleys. We found thatthe values of the drainage area exponents, d, are lower in the beheadedvalleys relative to undisturbed valleys but remain positive. Reversedvalleys, in contrast, are characterized by negative d exponents, indicatingvalley narrowing with increasing drainage area. In the reversed category, wealso explored the independent effect of channel slope (S) through theequation W=kbAbSc, which yieldednegative and overall similar values for b and c. A detailed study in one reversed valley section shows that the valleynarrows downstream, whereasmore »the channel widens, suggesting that, ashypothesized, the channel width adjusts faster to post-reorganizationdrainage area distribution. The adjusted narrow channel dictates the widthof formative flows in the reversed valley, which contrasts with the meaningfullywider formative flows of the beheaded valley across the divide. Thisdifference results in a step change in the unit stream power between thereversed and beheaded channels, potentially leading to a “width feedback”that promotes ongoing divide migration and reorganization. Our findings demonstrate that valley width–area scaling is a potential toolfor identifying landscapes influenced by drainage reorganization. Accountingfor reorganization-specific scaling can improve estimations of erosion ratedistributions in reorganized landscapes.« less
  2. Abstract. Here we examine the landscape of New Zealand'sMarlborough Fault System (MFS), where the Australian and Pacific plates obliquelycollide, in order to study landscape evolution and the controls on fluvialpatterns at a long-lived plate boundary. We present maps of drainageanomalies and channel steepness, as well as an analysis of the plan-vieworientations of rivers and faults, and we find abundant evidence ofstructurally controlled drainage that we relate to a history of drainagecapture and rearrangement in response to mountain-building and strike-slipfaulting. Despite clear evidence of recent rearrangement of the western MFSdrainage network, rivers in this region still flow parallel to older faults,rather than along orthogonal traces of younger, active strike-slip faults.Such drainage patterns emphasize the importance of river entrenchment,showing that once rivers establish themselves along a structural grain,their capture or avulsion becomes difficult, even when exposed to newweakening and tectonic strain. Continued flow along older faults may alsoindicate that the younger faults have not yet generated a fault damage zonewith the material weakening needed to focus erosion and reorient rivers.Channel steepness is highest in the eastern MFS, in a zone centered on theKaikōura ranges, including within the low-elevation valleys of main stemrivers and at tributaries near the coast. This pattern is consistentmore »with anincrease in rock uplift rate toward a subduction front that is locked on itssouthern end. Based on these results and a wealth of previous geologicstudies, we propose two broad stages of landscape evolution over the last 25 million years of orogenesis. In the eastern MFS, Miocene folding above blindthrust faults generated prominent mountain peaks and formed major transverserivers early in the plate collision history. A transition to Pliocenedextral strike-slip faulting and widespread uplift led to cycles of riverchannel offset, deflection and capture of tributaries draining across activefaults, and headward erosion and captures by major transverse rivers withinthe western MFS. We predict a similar landscape will evolve south of theHope Fault, as the locus of plate boundary deformation migrates southwardinto this region with time.« less
  3. Periodic external environmental forcings, typically operating at Milankovitch frequencies, are known to be encoded in sediments and sedimentary rocks, but sub-Milankovitch frequencies are more difficult to recognize, in part because of temporal overlap with autogenic processes. Here we use luminescence geochronology and rock-magnetic and lithostratigraphic-based cyclostratigraphy to investigate sub-Milankovitch periodicity in three high sedimentation rate deltas located in diverse tectonic and climatic settings. The Sciota kame delta in tectonically stable eastern Pennsylvania (USA) was deposited at a rate of ~2.5 cm/yr over ~1 kyrs and has a concentration of magnetic spectral power at ~53 cm, corresponding to a ~22 yr period. Lacking a subaerial fluvial catchment, periodicity in this delta is necessarily restricted to depositional processes or ice-wasting discharge fluctuations. Similarly, the Provo-stage Lake Bonneville High Creek delta (Utah, USA) was deposited at a rate of ~3 cm/yr over ~3 kyrs. It displays meter-scale coarsening-up bedsets interpreted as decadal-scale discharge variations during foreset propagation. Unlike the Sciota kame, the High Creek delta is fed by a subaerial catchment with little storage that supported a small cirque glacier during the LGM. The High Creek delta also aggraded in the subsiding hanging wall of the East Cache Valley fault and experienced atmore »least one syn-depositional earthquake. Lastly, The Pagliara delta (northeast Sicily, Italy) was deposited at a rate of ~3 cm/yr in the rapidly uplifting footwall of a coastal seismogenic normal fault. This delta has a concentration of magnetic susceptibility spectral power at ~60 cm corresponding to a ~20 yr period. A multi-decadal periodicity emerges in all three deltas, despite the variable catchment, climate, and tectonic setting. We interpret this as representing a quasi-periodic, autogenic depositional process possibly related to distributary channel switching. However, differences in the rock-magnetic power spectra and lithostratigraphy of the Pagliara and High Creek deltas respectfully, indicates that sub-Milankovitch external forcings in the catchments, including tectonics, are also encoded in the delta stratigraphy.« less
  4. Complexities of terrestrial boundaries with salt marshes in coastal lagoons affect salt marsh exposure to waves and sediments creating different potentials for marsh migration inland and seaward-edge erosion, and consequently, for marsh persistence. Between 2002 and 2017, migration and edge erosion were measured in three mainland geomorphic marsh types (headland, valley, hammock) and were used to assess the rate and spatial extent of marsh change for a Virginia coastal lagoon system. Treelines, shorelines, and marsh perimeters were delineated in ArcGIS at 1:600 resolution. All marsh types increased in spatial extent; increases were greatest for the valley type (0.58 ha ± 0.31 ha or + 0.32% per annum). Measured rates of migration (headland > valley > hammock) and erosion (headland > hammock > valley) for each geomorphic type were averaged and applied to obtain changes in these same marsh types at the regional scale. At this scale, valley marsh area increased (82.5 ha or 5.5 ha a−1) more than the other two marsh types combined. This analysis demonstrates the critical influence that geomorphic type has on lateral marsh responses to sea-level rise and that efforts to conserve or restore salt marshes are most likely to be successful when focused on valley marshes.
  5. Bedrock weathering regulates nutrient mobilization, water storage, and soil production. Relative to the mobile soil layer, little is known about the relationship between topography and bedrock weathering. Here, we identify a common pattern of weathering and water storage across a sequence of three ridges and valleys in the sedimentary Great Valley Sequence in Northern California that share a tectonic and climate history. Deep drilling, downhole logging, and characterization of chemistry and porosity reveal two weathering fronts. The shallower front is ∼7 m deep at the ridge of all three hillslopes, and marks the extent of pervasive fracturing and oxidation of pyrite and organic carbon. A deeper weathering front marks the extent of open fractures and discoloration. This front is 11 m deep under two ridges of similar ridge-valley spacing, but 17.5 m deep under a ridge with nearly twice the ridge-valley spacing. Hence, at ridge tops, the fraction of the hillslope relief that is weathered scales with hillslope length. In all three hillslopes, below this second weathering front, closed fractures and unweathered bedrock extend about one-half the hilltop elevation above the adjacent channels. Neutron probe surveys reveal that seasonally dynamic moisture is stored to approximately the same depth as themore »shallow weathering front. Under the channels that bound our study hillslopes, the two weathering fronts coincide and occur within centimeters of the ground surface. Our findings provide evidence for feedbacks between erosion and weathering in mountainous landscapes that result in systematic subsurface structuring and water routing.« less