skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
A key challenge in intelligent robotics is creating robots that are capable of directly interacting with the world around them to achieve their goals. The last decade has seen substantial growth in research on the problem of robot manipulation, which aims to exploit the increasing availability of affordable robot arms and grippers to create robots capable of directly interacting with the world to achieve their goals. Learning will be central to such autonomous systems, as the real world contains too much variation for a robot to expect to have an accurate model of its environment, the objects in it, or the skills required to manipulate them, in advance. We aim to survey a representative subset of that research which uses machine learning for manipulation. We describe a formalization of the robot manipulation learning problem that synthesizes existing research into a single coherent framework and highlight the many remaining research opportunities and challenges.  more » « less
Award ID(s):
1717569
PAR ID:
10310139
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of machine learning research
Volume:
22
Issue:
30
ISSN:
1533-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yashinski, Melisa (Ed.)
    To achieve human-level dexterity, robots must infer spatial awareness from multimodal sensing to reason over contact interactions. During in-hand manipulation of novel objects, such spatial awareness involves estimating the object’s pose and shape. The status quo for in-hand perception primarily uses vision and is restricted to tracking a priori known objects. Moreover, visual occlusion of objects in hand is imminent during manipulation, preventing current systems from pushing beyond tasks without occlusion. We combined vision and touch sensing on a multifingered hand to estimate an object’s pose and shape during in-hand manipulation. Our method, NeuralFeels, encodes object geometry by learning a neural field online and jointly tracks it by optimizing a pose graph problem. We studied multimodal in-hand perception in simulation and the real world, interacting with different objects via a proprioception-driven policy. Our experiments showed final reconstructionFscores of 81% and average pose drifts of 4.7 millimeters, which was further reduced to 2.3 millimeters with known object models. In addition, we observed that, under heavy visual occlusion, we could achieve improvements in tracking up to 94% compared with vision-only methods. Our results demonstrate that touch, at the very least, refines and, at the very best, disambiguates visual estimates during in-hand manipulation. We release our evaluation dataset of 70 experiments, FeelSight, as a step toward benchmarking in this domain. Our neural representation driven by multimodal sensing can serve as a perception backbone toward advancing robot dexterity. 
    more » « less
  2. The ability to learn from human demonstration endows robots with the ability to automate various tasks. However, directly learning from human demonstration is challenging since the structure of the human hand can be very different from the desired robot gripper. In this work, we show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning, where a five-finger human dexterous hand robot gradually evolves into a commercial two-finger-gripper robot, while repeated interacting in a physics simulator to continuously update the policy that is first learned from human demonstration. To deal with the high dimensions of robot parameters, we propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy. Through experiments on human object manipulation datasets, we show that our framework can efficiently transfer the expert human agent policy trained from human demonstrations in diverse modalities to a target commercial robot. 
    more » « less
  3. When a mobile robot is deployed in a field environment, e.g., during a disaster response application, the capability of adapting its navigational behaviors to unstructured terrains is essential for effective and safe robot navigation. In this paper, we introduce a novel joint terrain representation and apprenticeship learning approach to implement robot adaptation to unstructured terrains. Different from conventional learning-based adaptation techniques, our approach provides a unified problem formulation that integrates representation and apprenticeship learning under a unified regularized optimization framework, instead of treating them as separate and independent procedures. Our approach also has the capability to automatically identify discriminative feature modalities, which can improve the robustness of robot adaptation. In addition, we implement a new optimization algorithm to solve the formulated problem, which provides a theoretical guarantee to converge to the global optimal solution. In the experiments, we extensively evaluate the proposed approach in real-world scenarios, in which a mobile robot navigates on familiar and unfamiliar unstructured terrains. Experimental results have shown that the proposed approach is able to transfer human expertise to robots with small errors, achieve superior performance compared with previous and baseline methods, and provide intuitive insights on the importance of terrain feature modalities. 
    more » « less
  4. Performing robust goal-directed manipulation tasks remains a crucial challenge for autonomous robots. In an ideal case, shared autonomous control of manipulators would allow human users to specify their intent as a goal state and have the robot reason over the actions and motions to achieve this goal. However, realizing this goal remains elusive due to the problem of perceiving the robot’s environment. We address and describe the problem of axiomatic scene estimation for robot manipulation in cluttered scenes which is the estimation of a tree-structured scene graph describing the configuration of objects observed from robot sensing. We propose generative approaches to scene inference (as the axiomatic particle filter, and the axiomatic scene estimation by Markov chain Monte Carlo based sampler) of the robot’s environment as a scene graph. The result from AxScEs estimation are axioms amenable to goal-directed manipulation through symbolic inference for task planning and collision-free motion planning and execution. We demonstrate the results for goal-directed manipulation of multi-object scenes by a PR2 robot. 
    more » « less
  5. Social robots are emerging as learning companions for children, and research shows that they facilitate the development of interest and learning even through brief interactions. However, little is known about how such technologies might support these goals in authentic environments over long-term periods of use and interaction. We designed a learning companion robot capable of supporting children reading popular-science books by expressing social and informational commentaries. We deployed the robot in homes of 14 families with children aged 10–12 for four weeks during the summer. Our analysis revealed critical factors that affected children’s long-term engagement and adoption of the robot, including external factors such as vacations, family visits, and extracurricular activities; family/parental involvement; and children’s individual interests. We present four in-depth cases that illustrate these factors and demonstrate their impact on children’s reading experiences and discuss the implications of our findings for robot design. 
    more » « less