skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Loss Functions, Axioms, and Peer Review
It is common to see a handful of reviewers reject a highly novel paper, because they view, say, extensive experiments as far more important than novelty, whereas the community as a whole would have embraced the paper. More generally, the disparate mapping of criteria scores to final recommendations by different reviewers is a major source of inconsistency in peer review. In this paper we present a framework inspired by empirical risk minimization (ERM) for learning the community's aggregate mapping. The key challenge that arises is the specification of a loss function for ERM. We consider the class of L(p,q) loss functions, which is a matrix-extension of the standard class of Lp losses on vectors; here the choice of the loss function amounts to choosing the hyperparameters p and q. To deal with the absence of ground truth in our problem, we instead draw on computational social choice to identify desirable values of the hyperparameters p and q. Specifically, we characterize p=q=1 as the only choice of these hyperparameters that satisfies three natural axiomatic properties. Finally, we implement and apply our approach to reviews from IJCAI 2017.  more » « less
Award ID(s):
1942124
PAR ID:
10310179
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Artificial Intelligence Research
Volume:
70
ISSN:
1076-9757
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Noise Contrastive Estimation (NCE) is a popular approach for learning probability density functions parameterized up to a constant of proportionality. The main idea is to design a classification problem for distinguishing training data from samples from an easy-to-sample noise distribution q, in a manner that avoids having to calculate a partition function. It is well-known that the choice of q can severely impact the computational and statistical efficiency of NCE. In practice, a common choice for q is a Gaussian which matches the mean and covariance of the data. In this paper, we show that such a choice can result in an exponentially bad (in the ambient dimension) conditioning of the Hessian of the loss, even for very simple data distributions. As a consequence, both the statistical and algorithmic complexity for such a choice of q will be problematic in practice, suggesting that more complex and tailored noise distributions are essential to the success of NCE. 
    more » « less
  2. Empirical risk minimization (ERM) is the workhorse of machine learning, whether for classification and regression or for off-policy policy learning, but its model-agnostic guarantees can fail when we use adaptively collected data, such as the result of running a contextual bandit algorithm. We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class and provide first-of-their-kind generalization guarantees and fast convergence rates. Our results are based on a new maximal inequality that carefully leverages the importance sampling structure to obtain rates with the good dependence on the exploration rate in the data. For regression, we provide fast rates that leverage the strong convexity of squared-error loss. For policy learning, we provide regret guarantees that close an open gap in the existing literature whenever exploration decays to zero, as is the case for bandit-collected data. An empirical investigation validates our theory. 
    more » « less
  3. Daumé III, Hal; Singh, Aarti (Ed.)
    Learning with noisy labels is a common challenge in supervised learning. Existing approaches often require practitioners to specify noise rates, i.e., a set of parameters controlling the severity of label noises in the problem, and the specifications are either assumed to be given or estimated using additional steps. In this work, we introduce a new family of loss functions that we name as peer loss functions, which enables learning from noisy labels and does not require a priori specification of the noise rates. Peer loss functions work within the standard empirical risk minimization (ERM) framework. We show that, under mild conditions, performing ERM with peer loss functions on the noisy data leads to the optimal or a near-optimal classifier as if performing ERM over the clean training data, which we do not have access to. We pair our results with an extensive set of experiments. Peer loss provides a way to simplify model development when facing potentially noisy training labels, and can be promoted as a robust candidate loss function in such situations. 
    more » « less
  4. Peer review assignment algorithms aim to match research papers to suitable expert reviewers, working to maximize the quality of the resulting reviews. A key challenge in designing effective assignment policies is evaluating how changes to the assignment algorithm map to changes in review quality. In this work, we leverage recently proposed policies that introduce randomness in peer-review assignment— in order to mitigate fraud—as a valuable opportunity to evaluate counterfactual assignment policies. Specifically, we exploit how such randomized assignments provide a positive probability of observing the reviews of many assignment policies of interest. To address challenges in applying standard off-policy evaluation methods, such as violations of positivity, we introduce novel methods for partial identification based on monotonicity and Lipschitz smoothness assumptions for the mapping between reviewer-paper covariates and outcomes. We apply our methods to peer-review data from two computer science venues: the TPDP'21 workshop (95 papers and 35 reviewers) and the AAAI'22 conference (8,450 papers and 3,145 reviewers). We consider estimates of (i) the effect on review quality when changing weights in the assignment algorithm, e.g., weighting reviewers' bids vs. textual similarity (between the review's past papers and the submission), and (ii) the "cost of randomization", capturing the difference in expected quality between the perturbed and unperturbed optimal match. We find that placing higher weight on text similarity results in higher review quality and that introducing randomization in the reviewer-paper assignment only marginally reduces the review quality. Our methods for partial identification may be of independent interest, while our off-policy approach can likely find use in evaluating a broad class of algorithmic matching systems. 
    more » « less
  5. We provide an information-theoretic analy- sis of the generalization ability of Gibbs- based transfer learning algorithms by focus- ing on two popular empirical risk minimiza- tion (ERM) approaches for transfer learning, α-weighted-ERM and two-stage-ERM. Our key result is an exact characterization of the generalization behavior using the conditional symmetrized Kullback-Leibler (KL) informa- tion between the output hypothesis and the target training samples given the source train- ing samples. Our results can also be applied to provide novel distribution-free generaliza- tion error upper bounds on these two afore- mentioned Gibbs algorithms. Our approach is versatile, as it also characterizes the gener- alization errors and excess risks of these two Gibbs algorithms in the asymptotic regime, where they converge to the α-weighted-ERM and two-stage-ERM, respectively. Based on our theoretical results, we show that the ben- efits of transfer learning can be viewed as a bias-variance trade-off, with the bias induced by the source distribution and the variance induced by the lack of target samples. We believe this viewpoint can guide the choice of transfer learning algorithms in practice. 
    more » « less