skip to main content


Title: Traceable PRFs: Full Collusion Resistance and Active Security
The main goal of traceable cryptography is to protect against unauthorized redistribution of cryptographic functionalities. Such schemes provide a way to embed identities (i.e., a “mark”) within cryptographic objects (e.g., decryption keys in an encryption scheme, signing keys in a signature scheme). In turn, the tracing guarantee ensures that any “pirate device” that successfully replicates the underlying functionality can be successfully traced to the set of identities used to build the device. In this work, we study traceable pseudorandom functions (PRFs). As PRFs are the workhorses of symmetric cryptography, traceable PRFs are useful for augmenting symmetric cryptographic primitives with strong traceable security guarantees. However, existing constructions of traceable PRFs either rely on strong notions like indistinguishability obfuscation or satisfy weak security guarantees like single-key security (i.e., tracing only works against adversaries that possess a single marked key). In this work, we show how to use fingerprinting codes to upgrade a single-key traceable PRF into a fully collusion resistant traceable PRF, where security holds regardless of how many keys the adversary possesses. We additionally introduce a stronger notion of security where tracing security holds even against active adversaries that have oracle access to the tracing algorithm. In conjunction with known constructions of single-key traceable PRFs, we obtain the first fully collusion resistant traceable PRF from standard lattice assumptions. Our traceable PRFs directly imply new lattice-based secret-key traitor tracing schemes that are CCA-secure and where tracing security holds against active adversaries that have access to the tracing oracle.  more » « less
Award ID(s):
2151131 1917414
NSF-PAR ID:
10310225
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Practice and Theory of Public-Key Cryptography (PKC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Software watermarking schemes allow a user to embed an identifier into a piece of code such that the resulting program is nearly functionally-equivalent to the original program, and yet, it is difficult to remove the identifier without destroying the functionality of the program. Such schemes are often considered for proving software ownership or for digital rights management. Existing constructions of watermarking have focused primarily on watermarking pseudorandom functions (PRFs). In this work, we revisit the definitional foundations of watermarking, and begin by highlighting a major flaw in existing security notions. Existing security notions for watermarking only require that the identifier be successfully extracted from programs that preserve the exact input/output behavior of the original program. In the context of PRFs, this means that an adversary that constructs a program which computes a quarter of the output bits of the PRF or that is able to distinguish the outputs of the PRF from random are considered to be outside the threat model. However, in any application (e.g., watermarking a decryption device or an authentication token) that relies on PRF security, an adversary that manages to predict a quarter of the bits or distinguishes the PRF outputs from random would be considered to have defeated the scheme. Thus, existing watermarking schemes provide very little security guarantee against realistic adversaries. None of the existing constructions of watermarkable PRFs would be able to extract the identifier from a program that only outputs a quarter of the bits of the PRF or one that perfectly distinguishes. To address the shortcomings in existing watermarkable PRF definitions, we introduce a new primitive called a traceable PRF. Our definitions are inspired by similar definitions from public-key traitor tracing, and aim to capture a very robust set of adversaries: namely, any adversary that produces a useful distinguisher (i.e., a program that can break PRF security), can be traced to a specific identifier. We provide a general framework for constructing traceable PRFs via an intermediate primitive called private linear constrained PRFs. Finally, we show how to construct traceable PRFs from a similar set of assumptions previously used to realize software watermarking. Namely, we obtain a single-key traceable PRF from standard lattice assumptions and a fully collusion-resistant traceable PRF from indistinguishability obfuscation (together with injective one-way functions). 
    more » « less
  2. Bhargavan, Karthikeyan ; Oswald, Elisabeth ; Prabhakaran, Manoj (Ed.)
    This paper gives the first definitions and constructions for incremental pseudo-random functions (IPRFs). The syntax is nonce based. (Algorithms are deterministic but may take as input a non-repeating quantity called a nonce.) The design approach is modular. First, given a scheme secure only in the single-document setting (there is just one document on which incremental updates are being performed) we show how to generically build a scheme that is secure in the more realistic multi-document setting (there are many documents, and they are simultaneously being incrementally updated). Then we give a general way to build an IPRF from (1) an incremental hash function with weak collision resistance properties and (2) a symmetric encryption scheme. (This adapts the classic Carter-Wegman paradigm used to build message authentication schemes in the non-incremental setting.) This leads to many particular IPRFs. Our work has both practical and theoretical motivation and value: Incremental PRFs bring the benefits of incrementality to new applications (such as incremental key derivation), and the movement from randomized or stateful schemes to nonce based ones, and from UF (unforgeability) to PRF security, bring incremental symmetric cryptography up to speed with the broader field of symmetric cryptography itself. 
    more » « less
  3. null (Ed.)
    Post-quantum schemes are expected to replace existing public-key schemes within a decade in billions of devices. To facilitate the transition, the US National Institute for Standards and Technology (NIST) is running a standardization process. Multivariate signatures is one of the main categories in NIST's post-quantum cryptography competition. Among the four candidates in this category, the LUOV and Rainbow schemes are based on the Oil and Vinegar scheme, first introduced in 1997 which has withstood over two decades of cryptanalysis. Beyond mathematical security and efficiency, security against side-channel attacks is a major concern in the competition. The current sentiment is that post-quantum schemes may be more resistant to fault-injection attacks due to their large key sizes and the lack of algebraic structure. We show that this is not true. We introduce a novel hybrid attack, QuantumHammer, and demonstrate it on the constant-time implementation of LUOV currently in Round 2 of the NIST post-quantum competition. The QuantumHammer attack is a combination of two attacks, a bit-tracing attack enabled via Rowhammer fault injection and a divide and conquer attack that uses bit-tracing as an oracle. Using bit-tracing, an attacker with access to faulty signatures collected using Rowhammer attack, can recover secret key bits albeit slowly. We employ a divide and conquer attack which exploits the structure in the key generation part of LUOV and solves the system of equations for the secret key more efficiently with few key bits recovered via bit-tracing. We have demonstrated the first successful in-the-wild attack on LUOV recovering all 11K key bits with less than 4 hours of an active Rowhammer attack. The post-processing part is highly parallel and thus can be trivially sped up using modest resources. QuantumHammer does not make any unrealistic assumptions, only requires software co-location (no physical access), and therefore can be used to target shared cloud servers or in other sandboxed environments. 
    more » « less
  4. Public key quantum money can be seen as a version of the quantum no-cloning theorem that holds even when the quantum states can be verified by the adversary. In this work, we investigate quantum lightning where no-cloning holds even when the adversary herself gener- ates the quantum state to be cloned. We then study quantum money and quantum lightning, showing the following results: – We demonstrate the usefulness of quantum lightning beyond quan- tum money by showing several potential applications, such as gen- erating random strings with a proof of entropy, to completely decen- tralized cryptocurrency without a block-chain, where transactions is instant and local. – We give Either/Or results for quantum money/lightning, showing that either signatures/hash functions/commitment schemes meet very strong recently proposed notions of security, or they yield quan- tum money or lightning. Given the difficulty in constructing public key quantum money, this suggests that natural schemes do attain strong security guarantees. – We show that instantiating the quantum money scheme of Aaron- son and Christiano [STOC’12] with indistinguishability obfuscation that is secure against quantum computers yields a secure quantum money scheme. This construction can be seen as an instance of our Either/Or result for signatures, giving the first separation between two security notions for signatures from the literature. – Finally, we give a plausible construction for quantum lightning, which we prove secure under an assumption related to the multi- collision resistance of degree-2 hash functions. Our construction is inspired by our Either/Or result for hash functions, and yields the first plausible standard model instantiation of a non-collapsing col- lision resistant hash function. This improves on a result of Unruh [Eurocrypt’16] which is relative to a quantum oracle. 
    more » « less
  5. Functional Encryption is a powerful notion of encryption in which each decryption key is associated with a function such that decryption recovers the function evaluation . Informally, security states that a user with access to function keys (and so on) can only learn (and so on) but nothing more about the message. The system is said to be -bounded collusion resistant if the security holds as long as an adversary gets access to at most function keys. A major drawback of such "statically" bounded collusion systems is that the collusion bound must be declared at setup time and is fixed for the entire lifetime of the system. We initiate the study of "dynamically" bounded collusion resistant functional encryption systems which provide more flexibility in terms of selecting the collusion bound, while reaping the benefits of statically bounded collusion FE systems (such as quantum resistance, simulation security, and general assumptions). Briefly, the virtues of a dynamically bounded scheme can be summarized as: (i) [Fine-grained individualized selection.] It lets each encryptor select the collusion bound by weighing the trade-off between performance overhead and the amount of collusion resilience. (ii) [Evolving encryption strategies.] Since the system is no longer tied to a single collusion bound, thus it allows to dynamically adjust the desired collusion resilience based on any number of evolving factors such as the age of the system, or a number of active users, etc. (iii) [Ease and simplicity of updatability.] None of the system parameters have to be updated when adjusting the collusion bound. That is, the same key can be used to decrypt ciphertexts for collusion bound as well as . We construct such a dynamically bounded functional encryption scheme for the class of all polynomial-size circuits under the general assumption of Identity-Based Encryption. 
    more » « less