skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Collusion Bounded Functional Encryption from Identity-Based Encryption
Functional Encryption is a powerful notion of encryption in which each decryption key is associated with a function such that decryption recovers the function evaluation . Informally, security states that a user with access to function keys (and so on) can only learn (and so on) but nothing more about the message. The system is said to be -bounded collusion resistant if the security holds as long as an adversary gets access to at most function keys. A major drawback of such "statically" bounded collusion systems is that the collusion bound must be declared at setup time and is fixed for the entire lifetime of the system. We initiate the study of "dynamically" bounded collusion resistant functional encryption systems which provide more flexibility in terms of selecting the collusion bound, while reaping the benefits of statically bounded collusion FE systems (such as quantum resistance, simulation security, and general assumptions). Briefly, the virtues of a dynamically bounded scheme can be summarized as: (i) [Fine-grained individualized selection.] It lets each encryptor select the collusion bound by weighing the trade-off between performance overhead and the amount of collusion resilience. (ii) [Evolving encryption strategies.] Since the system is no longer tied to a single collusion bound, thus it allows to dynamically adjust the desired collusion resilience based on any number of evolving factors such as the age of the system, or a number of active users, etc. (iii) [Ease and simplicity of updatability.] None of the system parameters have to be updated when adjusting the collusion bound. That is, the same key can be used to decrypt ciphertexts for collusion bound as well as . We construct such a dynamically bounded functional encryption scheme for the class of all polynomial-size circuits under the general assumption of Identity-Based Encryption.  more » « less
Award ID(s):
1908611
PAR ID:
10345425
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Eurocrypt 2022
Page Range / eLocation ID:
736-763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Attribute-based encryption (ABE) generalizes public-key encryption and enables fine-grained control to encrypted data. However, ABE upends the traditional trust model of public-key encryption by requiring a single trusted authority to issue decryption keys. If an adversary compromises the central authority and exfiltrates its secret key, then the adversary can decrypt every ciphertext in the system. This work introduces registered ABE, a primitive that allows users to generate secret keys on their own and then register the associated public key with a “key curator” along with their attributes. The key curator aggregates the public keys from the different users into a single compact master public key. To decrypt, users occasionally need to obtain helper decryption keys from the key curator which they combine with their own secret keys. We require that the size of the aggregated public key, the helper decryption keys, the ciphertexts, as well as the encryption/decryption times to be polylogarithmic in the number of registered users. Moreover, the key curator is entirely transparent and maintains no secrets. Registered ABE generalizes the notion of registration-based encryption (RBE) introduced by Garg et al. (TCC 2018), who focused on the simpler setting of identity-based encryption. We construct a registered ABE scheme that supports an a priori bounded number of users and policies that can be described by a linear secret sharing scheme (e.g., monotone Boolean formulas) from assumptions on composite-order pairing groups. Our approach deviates sharply from previous techniques for constructing RBE and only makes black-box use of cryptography. All existing RBE constructions (a weaker notion than registered ABE) rely on heavy non-black-box techniques. The encryption and decryption costs of our construction are comparable to those of vanilla pairing-based ABE. Two limitations of our scheme are that it requires a structured reference string whose size scales quadratically with the number of users (and linearly with the size of the attribute universe) and the running time of registration scales linearly with the number of users. Finally, as a feasibility result, we construct a registered ABE scheme that supports general policies and an arbitrary number of users from indistinguishability obfuscation and somewhere statistically binding hash functions. 
    more » « less
  2. The main goal of traceable cryptography is to protect against unauthorized redistribution of cryptographic functionalities. Such schemes provide a way to embed identities (i.e., a “mark”) within cryptographic objects (e.g., decryption keys in an encryption scheme, signing keys in a signature scheme). In turn, the tracing guarantee ensures that any “pirate device” that successfully replicates the underlying functionality can be successfully traced to the set of identities used to build the device. In this work, we study traceable pseudorandom functions (PRFs). As PRFs are the workhorses of symmetric cryptography, traceable PRFs are useful for augmenting symmetric cryptographic primitives with strong traceable security guarantees. However, existing constructions of traceable PRFs either rely on strong notions like indistinguishability obfuscation or satisfy weak security guarantees like single-key security (i.e., tracing only works against adversaries that possess a single marked key). In this work, we show how to use fingerprinting codes to upgrade a single-key traceable PRF into a fully collusion resistant traceable PRF, where security holds regardless of how many keys the adversary possesses. We additionally introduce a stronger notion of security where tracing security holds even against active adversaries that have oracle access to the tracing algorithm. In conjunction with known constructions of single-key traceable PRFs, we obtain the first fully collusion resistant traceable PRF from standard lattice assumptions. Our traceable PRFs directly imply new lattice-based secret-key traitor tracing schemes that are CCA-secure and where tracing security holds against active adversaries that have access to the tracing oracle. 
    more » « less
  3. Traditional encryption methods cannot defend against coercive attacks in which the adversary captures both the user and the possessed computing device, and forces the user to disclose the decryption keys. Plausibly deniable encryption (PDE) has been designed to defend against this strong coercive attacker. At its core, PDE allows the victim to plausibly deny the very existence of hidden sensitive data and the corresponding decryption keys upon being coerced. Designing an efficient PDE system for a mobile platform, however, is challenging due to various design constraints bound to the mobile systems. Leveraging image steganography and the built-in hardware security feature of mobile devices, namely TrustZone, we have designed a Simple Mobile Plausibly Deniable Encryption (SMPDE) system which can combat coercive adversaries and, meanwhile, is able to overcome unique design constraints. In our design, the encoding/decoding process of image steganography is bounded together with Arm TrustZone. In this manner, the coercive adversary will be given a decoy key, which can only activate a DUMMY trusted application that will instead sanitize the sensitive information stored hidden in the stego-image upon decoding. On the contrary, the actual user can be given the true key, which can activate the PDE trusted application that can really extract the sensitive information from the stego-image upon decoding. Security analysis and experimental evaluation justify both the security and the efficiency of our design. 
    more » « less
  4. We introduce the notion of a conditional encryption scheme as an extension of public key encryption. In addition to the standard public key algorithms (KG, Enc, Dec) for key generation, encryption and decryption, a conditional encryption scheme for a binary predicate P adds a new conditional encryption algorithm CEnc. The conditional encryption algorithm c=CEncpk (c1,m2,m3) takes as input the public encryption key pk, a ciphertext c1 = Encpk (m1) for an unknown message m1, a control message m2 and a payload message m3 and outputs a conditional ciphertext c. Intuitively, if P(m1,m2)=1 then the conditional ciphertext c should decrypt to the payload message m3. On the other hand if P(m1,m2) = 0 then the ciphertext should not leak any information about the control message m2 or the payload message m3 even if the attacker already has the secret decryption key sk. We formalize the notion of conditional encryption secrecy and provide concretely efficient constructions for a set of predicates relevant to password typo correction. Our practical constructions utilize the Paillier partially homomorphic encryption scheme as well as Shamir Secret Sharing. We prove that our constructions are secure and demonstrate how to use conditional encryption to improve the security of personalized password typo correction systems such as TypTop. We implement a C++ library for our practically efficient conditional encryption schemes and evaluate the performance empirically. We also update the implementation of TypTop to utilize conditional encryption for enhanced security guarantees and evaluate the performance of the updated implementation. 
    more » « less
  5. Name-based publish/subscribe systems using Information-Centric Networking (ICN) principles can provide a flexible and efficient framework for communication in disaster situations. Efficient, secure dissemination of information can play a critical role in disaster management. But, secure and authenticated group communications that maintain confidentiality and integrity remain a challenge. In this paper, we design a flexible and efficient encryption framework SAFE that leverages graph-based naming frameworks for providing role-based communication among first responders. We study the suitability of message-oriented encryption where the sender leverages the name hierarchy, and compare it with a key-oriented encryption scheme that requires the receiver to utilize appropriate keys to decrypt based on the publisher-targeted name for the message. Both encryption schemas can be built with attribute-based encryption (ABE) or public key encryption (PKE) implementations. We find message-oriented encryption provides the needed flexibility for dynamic environments when communicating with members changes frequently. With message-oriented encryption, we further address key revocation and support for infrastructure-less environments in disaster situations and consider the tradeoff between flexibility and optimization for large relatively static communication groups. We evaluate both encryption schemas built on top of ABE and PKE. We examine the key generation time, ciphertext length, encryption, and decryption time, and see that SAFE's design is the most suitable for large and dynamically changing groups. 
    more » « less