Cadmium telluride (CdTe) solar cells are a promising photovoltaic (PV) technology for producing power in space owing to their high-efficiency (> 22.1 %), potential for specific power, and cost-effective manufacturing processes. In contrast to traditional space PVs, the high-Z (atomic number) CdTe absorbers can be intrinsically robust under extreme space radiation, offering long-term stability. Despite these advantages, the performance assessment of CdTe solar cells under high-energy particle irradiation (e.g., photons, neutrons, charged particles) is limited in the literature, and their stability is not comprehensively studied. In this work, we present the PV response of n-CdS / p-CdTe PVs under accelerated neutron irradiation. We measure PV properties of the devices at different neutron/photon doses. The equivalent dose deposited in the CdTe samples is simulated with deterministic and Monte Carlo radiation transport methods. Thin-film CdTe solar cells were synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate (≈ 4 cm × 4 cm). CdS:O (≈ 100 nm) was reactively RF sputtered in an oxygen/argon ambient followed by a close-spaced sublimation deposition of CdTe (≈ 3.5 μm) in an oxygen/helium ambient. The sample was exposed to a 10 min vapor CdCl2 in oxygen/helium ambient at 430˚C. The samples were exposed to a wet CuCl2 solution prior to anneal 200ºC. A gold back-contact was formed on CdTe via thermal evaporation. The final sample contains 16 CdTe devices. For neutron irradiation, we cleaved the CdTe substrate into four samples and exposed two samples to ≈ 90 kW reactor power neutron radiation for 5.5 hours and 8.2 hours, respectively, in our TRIGA (Training, Research, Isotopes, General Atomics) reactor. We observed a noticeable color change of the glass substrates to brown after the neutron/gamma reactor exposure. Presumably, the injected high-energy neutrons caused the breaking of chemical bonds and the displacement of atoms in the glass substrates, creating point defects and color centers. The I-V characteristics showed noticeable deterioration with over 8 hour radiations. Specifically, the saturation current of the control devices was ≈ 25 nA increasing to 1 μA and 10 μA for the 5.5-hour and 8.2-hour radiated samples, respectively. The turn-on voltage of the control devices (≈ 0.85 V) decreased with the irradiated sample (≈ 0.75 V for 5.5-hour and ≈ 0.5 V for 8.2-hour exposures), implying noticeable radiation damage occurred at the heterojunction. The higher values of the ideality factor for irradiated devices (n > 2.2) compared to that of the control devices (n ≈ 1.3) also support the deterioration of the p-n junction. We observed the notable decrease in shunt resistance (RSH) and the increase in series resistance (Rs) with the neutron dose. It is possible that Cu ions introduced during the CuCl2 treatment may migrate into CdTe grain boundaries (GBs). The presence of Cu ions at GBs can create additional leakage paths for photocarrier transport, deteriorating the overall PV performance. We estimated the radiation dose of CdTe in comparison to Si (conventional PV) using a UUTR model (e.g., MCNP6 2D UTR Reactor simulations). In this model, we simulated Si and CdTe at the center point of the triangular fuel lattice and used an “unperturbed flux” tally in the water. Our simulations yielded a dose rate of 6916 Gy/s of neutrons and 16 Gy/s of photons for CdTe, and 1 Gy/s of neutrons and 21 Gy/s of photons for Si (doses +/- <1%). The large dose rate of neutrons in CdTe is mainly attributed to the large thermal neutron absorption cross-section of 113Cd. Based on this estimation, we calculate that the exposure of our CdTe PVs is equivalent to several million years in LEO (Low-Earth Orbit), or about 10,000 years for Si in LEO. Currently, we are working on a low-dose neutron/photon radiation on CdTe PVs and their light I-Vs and microstructural characterizations to gain better understanding on the degradation of CdTe PVs.
more »
« less
Local Photovoltaic Measurements of CdTe Solar Cells Using Microscale Point Back-Contacts
Cadmium telluride (CdTe) thin-film semiconductors exhibit many desirable properties for low-cost and high-efficiency photovoltaic (PV) technology, including inherent robustness of inorganic absorber, a direct bandgap that allows full absorption of the solar spectrum with thicknesses of only few microns, and inexpensive and high-throughput manufacturing processes. At the best efficiency of 22 %, the power conversion efficiency of CdTe PVs is still well below the maximum theoretical limit (approximately 30 %). It has been suggested that the inferior efficiency is mainly attributed to the inherent polycrystalline nature of CdTe absorber (e.g., grains, grain boundaries). Understanding local photocarrier dynamics is vital to overcoming roadblocks toward higher efficiency CdTe PVs. However, conventional cell-level PV measurements often limit the microstructural analysis. In this work, we present a local PV characterization technique using point back-contacts. The thin-film CdTe solar cells used in this work were prepared by CSS (close-spaced sublimation) on a stack of n-type window layer (e.g., CdS) / transparent conductive layer (TCO; e.g., SnO2) / glass substrate.
more »
« less
- Award ID(s):
- 1711885
- PAR ID:
- 10310242
- Date Published:
- Journal Name:
- electronic materials conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
De_Angelis, Filippo (Ed.)An integration of perovskite and cadmium telluride (CdTe) solar cells in a tandem configuration has the potential to yield efficient thin-film tandem solar cells. Owing to the promise of higher efficiency at low cost, the presented study aims to explore the potential for combining this commercially established CdTe photovoltaics (PV) with next-generation perovskite PV. Here, we developed four-terminal (4-T) CdTe/perovskite tandem solar cells, starting with 18.3% efficient near-infrared-transparent perovskite solar cells (NIR-TPSCs) with an average transmission (Tavg) of 24.76% in the 300−900 nm wavelength range. These were then integrated with 19.56% efficient opaque CdTe solar cells, achieving 23.42% efficiency in a 4-T tandem configuration. Additionally, using a refractive index matching liquid increases the overall power conversion efficiency (PCE)to 24.2%. This pioneering achievement marks the first instance of a 4-T CdTe/perovskite thin-film tandem solar cell exceeding a PCE of 24.2%, a significant 123.72% increase in overall PCE.more » « less
-
Microstructural properties of thin-film absorber layers play a vital role in developing high-performance solar cells. Scanning probe microscopy is frequently used for measuring spatially inhomogeneous properties of thin-film solar cells. While powerful, the nanoscale probe can be sensitive to the roughness of samples, introducing convoluted signals and unintended artifacts into the measurement. Here, we apply a glancing-angle focused ion beam (FIB) technique to reduce the surface roughness of CdTe while preserving the subsurface optoelectronic properties of the solar cells. We compare the nanoscale optoelectronic properties “before” and “after” the FIB polishing. Simultaneously collected Kelvin-probe force microscopy (KPFM) and atomic force microscopy (AFM) images show that the contact potential difference (CPD) of CdTe pristine (peak-to-valley roughness > 600 nm) follows the topography. In contrast, the CPD map of polished CdTe (< 20 nm) is independent of the surface roughness. We demonstrate the smooth CdTe surface also enables high-resolution photoluminescence (PL) imaging at a resolution much smaller than individual grains (< 1 μm). Our finite-difference time-domain (FDTD) simulations illustrate how the local light excitation interacts with CdTe surfaces. Our work supports low-angle FIB polishing can be beneficial in studying buried sub-microstructural properties of thin-film solar cells with care for possible ion-beam damage near the surface.more » « less
-
Cadmium telluride and silicon are among the widely used absorber materials in photovoltaic industry. A tandem solar cell of these two can absorb significant portion of solar spectrum to yield high efficiency due to the added voltage of the two solar cells. On basis of low-cost production, a CdTe/Si cell has the potential to produce low-cost and high efficiency tandem PV. The CdTe top cell in a substrate configuration is essential to achieve a tandem between CdTe and Si. A functional CdS/CdTe solar cell in the substrate configuration was fabricated on a Si wafer. Current -Voltage measurements show a diode-like curve with lower J-V parameters compared to standard CdS/CdTe cells. SCAPS simulations were performed to identify possible reasons for poor performance and help improve the device performance.more » « less
-
A systematic study was performed with a coupled optoelectronic model to examine the effect of the concentration of sunlight on the efficiencies of CIGS, CZTSSe and AlGaAs thin-film solar cells with a graded-bandgap absorber layer. Efficiencies of 34.6% for CIGS thin-film solar cells and 29.9% for CZTSSe thin-film solar cells are predicted with a concentration of 100 suns, the respective one-sun efficiencies being 27.7% and 21.7%. An efficiency of 36.7% is predicted for AlGaAs thin-film solar cells with a concentration of 60 suns, in comparison to 34.5% one-sun efficiency. Sunlight concentration does not affect the per-sun electron–hole-pair (EHP) generation rate but reduces the per-sun EHP recombination rate either near the front and back faces or in the graded-bandgap regions of the absorber layer, depending upon the semiconductor used for that layer, and this is the primary reason for the improvement in efficiency. Other effects include the enhancement of open-circuit voltage, which can be positively correlated to the higher short-circuit current density. Sunlight concentration can therefore play a significant role in enhancing the efficiency of thin-film solar cells.more » « less