skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Correlation of STEM Interest and Career Intent in High-School Students
Understanding high school students’ perceptions and dispositions toward STEM, and the role science and math self-efficacy play in establishing STEM career aspirations is imperative to preparing the STEM workforce of the future. Project STEMulate is an industry-aligned and technology-rich Problem-based Learning (PBL) model. The goal of this NSF ITEST grant-funded study (2018-2020) was to improve students’ attitudes towards STEM. Project STEMulate focuses on Upward Bound students in Hawaiˋi and was implemented at three sites: Maui, Hilo, and Oahu. The participants voluntarily selected to participate in this program. The current study reviews year one data collected on the impact of Project STEMulate on low-income and underrepresented and/or native Hawaiian students' STEM career interest, and their science self-efficacy. Students’ reactions to the STEM learning experience were extremely positive. 80% of students expressed a desire to pursue a career in STEM at the post test. High school students who listed their plan to pursue a career in STEM also showed a higher self-efficacy and motivation. Analysis of the results demonstrates this program was effective in empowering students with insights into careers, enhancing knowledge that would serve them in pursuit of a career in STEM. In addition, the project fostered a can-do attitude and increased students’ science self- efficacy.  more » « less
Award ID(s):
1657625
NSF-PAR ID:
10310256
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The IAFOR International Conference on Education – Hawaii 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An interdisciplinary team of faculty, staff, and students at Illinois State University is partnering with the Chicago Public Schools district (CPS) and non-profit Community-Based Organizations in four Chicago neighborhoods to create a new after-school STEM program known as SUPERCHARGE. Funded by NSF, the primary purpose of the project is to increase the number of students from underrepresented groups who pursue STEM fields at the postsecondary level. Faculty from STEM and STEM education program areas as well as the National Center for Urban Education at Illinois State University comprise the leadership team for the project. Guided by the National Research Council’s STEM Learning Ecosystem Model, SUPERCHARGE will contribute to the disruption of inequities that hinder access to STEM career pipelines for participants by serving as a bridge between informal high school academic experiences, STEM-related higher education programs, and STEM-related career pathways. Research to determine the impact of the program on students' interest, understanding, and self-efficacy towards STEM careers, as well as teachers and undergraduate students’ understanding of promoting change, will also be conducted. The Partnerships in Education and Resilience (PEAR) Common Instrument for students and teachers, and interviews with stakeholders are being used to support data gathering and program feedback. These data sources will be used for program assessment and future research. 
    more » « less
  2. The goal of Project STEMulate, a National Science Foundation ITEST study (DRL 1657625), was to develop, implement, and evaluate a program that fosters success in STEM for underserved and underrepresented high school students. The project was implemented at three sites of the Department of Education Upward Bound Program in Hawaiˋi. Project STEMulate delivered teacher training on Problem-Based Learning curriculum to ensure students were motivated and empowered, and to support STEM- related postsecondary educational success of Hawaiian and Pacific Islander students. A critical design goal of the program was to introduce teaching and learning strategies and processes that were more relevant to underrepresented youth populations than those offered in typical high schools to provide opportunities and to increase participation in the STEM study and career trajectory, something all too often out of mind and scope of these students. This study reports on three years of mixed methods summer academy data on both student and teacher learning outcomes. Teacher dispositions, evidenced through data from interviews, observations, and multi-point surveys improved in a majority of the dimensions, including teaching inquiry-based approaches, integrating technology, and STEM career knowledge and awareness. Student motivation, Science self-efficacy, and STEM career interest, evidenced from similar data sources, increased as well. Finally, we discuss the larger implications of extending this work to impact similar populations elsewhere of isolated, under- resourced and under-exposed youth with these proven strategies. 
    more » « less
  3. In response to the low representation of Latinx adults in STEM occupations, this community-based participatory action research study aims to increase the number of middle school youths developing STEM career identities and entering high school with the intention to pursue STEM careers. The students were provided with summer and after-school activities focusing on network science and career development curricula. Using a quasi-experimental pretest–posttest design and career narratives, this study examined the changes in STEM and career self-efficacy, as well as career identity. The results show improvements in self-efficacy, an increased number of youths with intentions of pursuing future STEM career opportunities, and deeper reflections on their talents and skills after program participation. This paper also describes the program development and implementation in detail, as well as the adaptations that resulted from COVID-19, for scholars and educators designing similar programs. This study provides promising evidence for the quality of STEM and career development lessons in supporting the emergence of a STEM career identity and self-efficacy.

     
    more » « less
  4. Our research, Landscapes of Deep Time in the Red Earth of France (NSF International Research Experience for Students project), aims to mentor U.S. undergraduate science students from underserved populations (e.g. students of Native American heritage and/or first-generation college students) in geological research. During the first field season (June 2018) formative and summative assessments (outlined below) will be issued to assist in our evaluation of student learning. The material advancement of a student's sedimentological skillsets and self-efficacy development in research applications are a direct measure of our program's success. (1) Immediately before and after the program, students will self-rank their competency of specific skillsets (e.g. data collection, lithologic description, use of field equipment) in an anonymous summative assessment. (2) Formative assessments throughout the field season (e.g. describing stratigraphic section independently, oral and written communication of results) will assess improved comprehension of the scientific process. (3) An anonymous attitudinal survey will be issued at the conclusion of the field season to shed light on the program's quality as a whole, influence on student desire to pursue a higher-level degree/career in STEM, and effectiveness of the program on aiding the development of participant confidence and self-efficacy in research design and application. We discuss herein the results of first-year assessments with a focus on strategies for improvement. We expect each individual's outcomes to differ depending on his/her own characteristics and background. Furthermore, some of the most valued intentions of this experience are inherently difficult to measure (e.g., improved understanding of the scientific process, a stimulated passion to pursue a STEM career). We hope to address shortcomings in design; e.g. Where did we lose visibility on certain aspects of the learning experience? How can we revise the format and content of our assessment to better evaluate student participants and improve our program in subsequent years? 
    more » « less
  5. There is a strong need to produce more college graduates with STEM degrees when the world copes with ever changing weather patterns, a global pandemic, and other natural and man-made disasters. These graduates also need come from an ever more diverse community to ensure that the needs of all are addressed with the best possible solutions. This project seeks to attract and retain students who have the ability and with the right support structure are fully capable of being successful in a STEM degree and beyond to a STEM career including engineering. In this poster we showcase successful strategies used in the DuSTEM program at Loras college. This program grants students scholarships and academic support funded by the National Science Foundation as part of the S-STEM program. Thus far, there were 22 students who started in the first year of the program and 14 students who started in the second year. All students are academically high-achieving students who demonstrate financial need. Students major in any STEM discipline, including general engineering. In the first year, the academic supports focus on the transition from high school to college and include seminars and proactive advising. In the second year, the academic supports move improve self-efficacy and does so by incorporating work on a group community-based learning project. Thus far the project has been successful in its goals of increasing enrollment and retention as compared to the control group. In the last year, like all students, this group has been impacted by the SARS-COV2 pandemic and supports within this program have attempted to help these students stay connected to a community despite the necessity for online learning. 
    more » « less