skip to main content


This content will become publicly available on June 1, 2024

Title: An After-school STEM Program with a Novel Equitable and Inclusive Structure
An interdisciplinary team of faculty, staff, and students at Illinois State University is partnering with the Chicago Public Schools district (CPS) and non-profit Community-Based Organizations in four Chicago neighborhoods to create a new after-school STEM program known as SUPERCHARGE. Funded by NSF, the primary purpose of the project is to increase the number of students from underrepresented groups who pursue STEM fields at the postsecondary level. Faculty from STEM and STEM education program areas as well as the National Center for Urban Education at Illinois State University comprise the leadership team for the project. Guided by the National Research Council’s STEM Learning Ecosystem Model, SUPERCHARGE will contribute to the disruption of inequities that hinder access to STEM career pipelines for participants by serving as a bridge between informal high school academic experiences, STEM-related higher education programs, and STEM-related career pathways. Research to determine the impact of the program on students' interest, understanding, and self-efficacy towards STEM careers, as well as teachers and undergraduate students’ understanding of promoting change, will also be conducted. The Partnerships in Education and Resilience (PEAR) Common Instrument for students and teachers, and interviews with stakeholders are being used to support data gathering and program feedback. These data sources will be used for program assessment and future research.  more » « less
Award ID(s):
2148429
NSF-PAR ID:
10424309
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the American Society for Engineering Education 2023 Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUPERCHARGE was proposed by Illinois State University faculty from the areas of STEM and STEM education, and accepted for funding by the National Science Foundation. This weekly after school program and curriculum is set to be deployed across four school years to four participating Chicago Public Schools. 
    more » « less
  2. Wright College, an open-access community college in northwest Chicago, is an independently accredited institution in the City Colleges of Chicago (CCC) system. Wright is federally recognized Hispanic-Serving Institution (HSI) with the largest enrollment of Hispanic students in Illinois. In 2015 Wright piloted a selective guaranteed admission program to the Grainer College of Engineering at the University of Illinois at Urbana-Champaign (UIUC). Students in the Engineering Pathways (EP) program follow a cohort system with rigorous curriculum aligned to UIUC. From this pilot Wright built programmatic frameworks (one-stop intentional advising; mandatory tutoring, near-peer, faculty and professional mentoring; and access to professional organizations) to support EP students. Initial results were positive: 89% transfer rate and 89% bachelor’s degree completion. Building from the EP frameworks, Wright obtained a National Science Foundation (NSF) HSI research grant to expand programs to non-pathway students. Through the grant, Building Bridges into Engineering and Computer Science, the college developed assessment tools, increased the number of 4-year partnerships, and designed and implemented an Engineering Summer Bridge with curriculum contextualized for the needs of the Near-STEM ready students. These students need one to four semesters of Math remediation before moving into the EP. The college measured the Bridge participants' success through analysis of Math proficiency before and after the Bridge, professional identity (sense of belonging) and self-efficacy (the belief that the students will succeed as engineers). Surveys and case study interviews are being supplemented with retention, persistence, transfer, associate and bachelor degree completion rates, and time for degree completion. The key research question is the correlation of these data with self-efficacy and professional identity measures. Preliminary Results: 1) Sixty percent (60%) of the Bridge participants eliminated the remedial Math requirement completely. (Increased Math proficiency) 2) Engineering admission and enrollment doubled. 4) Increased institutionalized collaborations: the creation of a more programmatic admission, advising, transfer, rigorous curriculum, and other student support services within the College. 5) Increased partnerships with 4-year transfer institutions resulting in the expansion of guaranteed/dual admissions programs with scholarships, paid research experience, dual advising, and students transferring as juniors. 5) Increased diversity in Engineering and Computer Science student population. Wright will share an overview of the Building Bridges into Engineering and Computer Science project, research design, expanded practices, assessments and insights from the development and implementation of this program. The developed frameworks will be applied to provide ALL students at Wright, and at CCC equitable Engineering and Computer Science education. 
    more » « less
  3. Despite national efforts in increasing representation of minority students in STEM disciplines, disparities prevail. Hispanics account for 17.4% of the U.S. population, and nearly 20% of the youth population (21 years and below) in the U.S. is Hispanic, yet they account for just 7% of the STEM workforce. To tackle these challenges, the National Science Foundation (NSF) has granted a 5-year project – ASSURE-US, that seeks to improve undergraduate education in Engineering and Computer Science (ECS) at California State University, Fullerton. The project seeks to advance student success during the first two years of college for ECS students. Towards that goal, the project incorporates a very diverse set of approaches, such as socio-cultural and academic interventions. Multiple strategies including developing early intervention strategies in gateway STEM courses, creating a nurturing faculty-student interaction and collaborative learning environment, providing relevant, contextual-based learning experiences, integrating project-based learning with engineering design in lower-division courses, exposing lower-division students to research to sustain student interests, and helping students develop career-readiness skills. The project also seeks to develop an understanding of the personal, social, cognitive, and contextual factors contributing to student persistence in STEM learning that can be used by STEM faculty to improve their pedagogical and student-interaction approaches. This paper summarizes the major approaches the ASSURE-US project plans to implement to reduce the achievement gap and motivate ECS students to remain in the program. Preliminary findings from the first-year implementation of the project including pre- and post- data were collected and analyzed from about one hundred freshmen and sophomore ECS students regarding their academic experience in lower-division classes and their feedback for various social support events held by the ASSURE-US project during the academic year 2018-19. The preliminary results obtained during the first year of ASSURE-US project suggests that among the different ASSURE-US activities implemented in the first year, both the informal faculty-student interactions and summer research experiences helped students commit more to their major during their lower-division years. The pre-post surveys also show improvements in terms of awareness among ASSURE-US students for obtaining academic support services, understanding career options and pathways, and obtaining personal counseling services. 
    more » « less
  4. There have been numerous demands for enhancements in the way undergraduate learning occurs today, especially at a time when the value of higher education continues to be called into question (The Boyer 2030 Commission, 2022). One type of demand has been for the increased integration of subjects/disciplines around relevant issues/topics—with a more recent trend of seeking transdisciplinary learning experiences for students (Sheets, 2016; American Association for the Advancement of Science, 2019). Transdisciplinary learning can be viewed as the holistic way of working equally across disciplines to transcend their own disciplinary boundaries to form new conceptual understandings as well as develop new ways in which to address complex topics or challenges (Ertas, Maxwell, Rainey, & Tanik, 2003; Park & Son, 2010). This transdisciplinary approach can be important as humanity’s problems are not typically discipline specific and require the convergence of competencies to lead to innovative thinking across fields of study. However, higher education continues to be siloed which makes the authentic teaching of converging topics, such as innovation, human-technology interactions, climate concerns, or harnessing the data revolution, organizationally difficult (Birx, 2019; Serdyukov, 2017). For example, working across a university’s academic units to collaboratively teach, or co-teach, around topics of convergence are likely to be rejected by the university systems that have been built upon longstanding traditions. While disciplinary expertise is necessary and one of higher education’s strengths, the structures and academic rigidity that come along with the disciplinary silos can prevent modifications/improvements to the roles of academic units/disciplines that could better prepare students for the future of both work and learning. The balancing of disciplinary structure with transdisciplinary approaches to solving problems and learning is a challenge that must be persistently addressed. These institutional challenges will only continue to limit universities seeking toward scaling transdisciplinary programs and experimenting with novel ways to enhance the value of higher education for students and society. This then restricts innovations to teaching and also hinders the sharing of important practices across disciplines. To address these concerns, a National Science Foundation Improving Undergraduate STEM Education project team, which is the topic of this paper, has set the goal of developing/implementing/testing an authentically transdisciplinary, and scalable educational model in an effort to help guide the transformation of traditional undergraduate learning to span academics silos. This educational model, referred to as the Mission, Meaning, Making (M3) program, is specifically focused on teaching the crosscutting practices of innovation by a) implementing co-teaching and co-learning from faculty and students across different academic units/colleges as well as b) offering learning experiences spanning multiple semesters that immerse students in a community that can nourish both their learning and innovative ideas. As a collaborative initiative, the M3 program is designed to synergize key strengths of an institution’s engineering/technology, liberal arts, and business colleges/units to create a transformative undergraduate experience focused on the pursuit of innovation—one that reaches the broader campus community, regardless of students’ backgrounds or majors. Throughout the development of this model, research was conducted to help identify institutional barriers toward creating such a cross-college program at a research-intensive public university along with uncovering ways in which to address these barriers. While data can show how students value and enjoy transdisciplinary experiences, universities are not likely to be structured in a way to support these educational initiatives and they will face challenges throughout their lifespan. These challenges can result from administration turnover whereas mutual agreements across colleges may then vanish, continued disputes over academic territory, and challenges over resource allotments. Essentially, there may be little to no incentives for academic departments to engage in transdisciplinary programming within the existing structures of higher education. However, some insights and practices have emerged from this research project that can be useful in moving toward transdisciplinary learning around topics of convergence. Accordingly, the paper will highlight features of an educational model that spans disciplines along with the workarounds to current institutional barriers. This paper will also provide lessons learned related to 1) the potential pitfalls with educational programming becoming “un-disciplinary” rather than transdisciplinary, 2) ways in which to incentivize departments/faculty to engage in transdisciplinary efforts, and 3) new structures within higher education that can be used to help faculty/students/staff to more easily converge to increase access to learning across academic boundaries. 
    more » « less
  5. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less