skip to main content


Title: A Review on Strategies for Data Collection, Reflection, and Communication in Eating Disorder Apps
Eating disorders (EDs) constitute a mental illness with the highest mortality. Today, mobile health apps provide promising means to ED patients for managing their condition. Apps enable users to monitor their eating habits, thoughts, and feelings, and offer analytic insights for behavior change. However, not only have scholars critiqued the clinical validity of these apps, their underlying design principles are not well understood. Through a review of 34 ED apps, we uncovered 11 different data types ED apps collect, and 9 strategies they employ to support collection and reflection. Drawing upon personal health informatics and visualization frameworks, we found that most apps did not adhere to best practices on what and how data should be collected from and reflected to users, or how data-driven insights should be communicated. Our review offers suggestions for improving the design of ED apps such that they can be useful and meaningful in ED recovery.  more » « less
Award ID(s):
1814909 1816403
PAR ID:
10310260
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This commentary addresses the challenges in identifying consistent moderators and mediators of psychological treatments for eating disorders (EDs), as highlighted by McClure et al. (International Journal of Eating Disorders, 2023) in their systematic review. Specifically, we discuss the often‐overlooked importance of temporal context (when an intervention is delivered), alongside sociodemographic and symptom type (for whom an intervention is delivered), in understanding and optimizing treatment engagement and effectiveness. We outline how individuals' fluctuating levels of motivation and receptivity across different “pivotal moments” in the help‐seeking process—including initial outreach and self‐screening, ongoing care engagement, and post‐discharge—can dynamically impact interventions' relevance and impacts. We also overview how Just‐In‐Time Adaptive Interventions in digital mental health interventions can be harnessed to simultaneously consider “when” and “for whom” ED interventions can exert the greatest benefits. We conclude with several recommendations for conducting ED intervention and implementation research that integrate timing into support delivery and study design, enabling a deeper understanding of not just how and for whom, but when, ED interventions can be most effective.

     
    more » « less
  2. Background Supporting mental health and wellness is of increasing interest due to a growing recognition of the prevalence and burden of mental health issues. Mood is a central aspect of mental health, and several technologies, especially mobile apps, have helped people track and understand it. However, despite formative work on and dissemination of mood-tracking apps, it is not well understood how mood-tracking apps used in real-world contexts might benefit people and what people hope to gain from them. Objective To address this gap, the purpose of this study was to understand motivations for and experiences in using mood-tracking apps from people who used them in real-world contexts. Methods We interviewed 22 participants who had used mood-tracking apps using a semistructured interview and card sorting task. The interview focused on their experiences using a mood-tracking app. We then conducted a card sorting task using screenshots of various data entry and data review features from mood-tracking apps. We used thematic analysis to identify themes around why people use mood-tracking apps, what they found useful about them, and where people felt these apps fell short. Results Users of mood-tracking apps were primarily motivated by negative life events or shifts in their own mental health that prompted them to engage in tracking and improve their situation. In general, participants felt that using a mood-tracking app facilitated self-awareness and helped them to look back on a previous emotion or mood experience to understand what was happening. Interestingly, some users reported less inclination to document their negative mood states and preferred to document their positive moods. There was a range of preferences for personalization and simplicity of tracking. Overall, users also liked features in which their previous tracked emotions and moods were visualized in figures or calendar form to understand trends. One gap in available mood-tracking apps was the lack of app-facilitated recommendations or suggestions for how to interpret their own data or improve their mood. Conclusions Although people find various features of mood-tracking apps helpful, the way people use mood-tracking apps, such as avoiding entering negative moods, tracking infrequently, or wanting support to understand or change their moods, demonstrate opportunities for improvement. Understanding why and how people are using current technologies can provide insights to guide future designs and implementations. 
    more » « less
  3. null (Ed.)
    Abstract Objective Fertility is becoming increasingly supported by consumer health technologies, especially mobile apps that support self-tracking activities. However, it is not clear whether the apps support the variety of goals and life events of those who menstruate, especially during transitions between them. Methods Thirty-one of the most popular fertility apps were evaluated, analyzing data from three sources: the content of app store pages, app features, and user reviews. Findings Results suggest that fertility apps are designed to support specific life goals of people who menstruate, offering several data collection features and limited feedback options. However, users often desire holistic tracking that encompasses a variety of goals, life events, and the transitions among them. Discussion These findings suggest fertility patients can benefit more from holistic self-tracking and provide insights for future design of consumer health technologies that better support holistic fertility tracking. Conclusion Fertility apps have the potential to support varied experiences of people who menstruate. But to achieve that, apps need to expand their support by offering ways for more users to perform holistic, personalized, and personally meaningful tracking, so they can derive long-term benefit from the data they collect. 
    more » « less
  4. Symptoms-tracking applications allow crowdsensing of health and location related data from individuals to track the spread and outbreaks of infectious diseases. During the COVID-19 pandemic, for the first time in history, these apps were widely adopted across the world to combat the pandemic. However, due to the sensitive nature of the data collected by these apps, serious privacy concerns were raised and apps were critiqued for their insufficient privacy safeguards. The Covid Nearby project was launched to develop a privacy-focused symptoms-tracking app and to understand the privacy preferences of users in health emergencies. In this work, we draw on the insights from the Covid Nearby users' data, and present an analysis of the significantly varying trends in users' privacy preferences with respect to demographics, attitude towards information sharing, and health concerns, e.g. after being possibly exposed to COVID-19. These results and insights can inform health informatics researchers and policy designers in developing more socially acceptable health apps in the future. 
    more » « less
  5. Online app search optimization (ASO) platforms that provide bulk installs and fake reviews for paying app developers in order to fraudulently boost their search rank in app stores, were shown to employ diverse and complex strategies that successfully evade state-of-the-art detection methods. In this paper we introduce RacketStore, a platform to collect data from Android devices of participating ASO providers and regular users, on their interactions with apps which they install from the Google Play Store. We present measurements from a study of 943 installs of RacketStore on 803 unique devices controlled by ASO providers and regular users, that consists of 58,362,249 data snapshots collected from these devices, the 12,341 apps installed on them and their 110,511,637 Google Play reviews. We reveal significant differences between ASO providers and regular users in terms of the number and types of user accounts registered on their devices, the number of apps they review, and the intervals between the installation times of apps and their review times. We leverage these insights to introduce features that model the usage of apps and devices, and show that they can train supervised learning algorithms to detect paid app installs and fake reviews with an F1-measure of 99.72% (AUC above 0.99), and detect devices controlled by ASO providers with an F1-measure of 95.29% (AUC = 0.95). We discuss the costs associated with evading detection by our classifiers and also the potential for app stores to use our approach to detect ASO work with privacy. 
    more » « less