skip to main content


Title: Molecular basis for the adaptive evolution of environment-sensing by H-NS proteins
The DNA-binding protein H-NS is a pleiotropic gene regulator in gram-negative bacteria. Through its capacity to sense temperature and other environmental factors, H-NS allows pathogens like Salmonella to adapt their gene expression to their presence inside or outside warm-blooded hosts. To investigate how this sensing mechanism may have evolved to fit different bacterial lifestyles, we compared H-NS orthologs from bacteria that infect humans, plants, and insects, and from bacteria that live on a deep-sea hypothermal vent. The combination of biophysical characterization, high-resolution proton-less nuclear magnetic resonance spectroscopy, and molecular simulations revealed, at an atomistic level, how the same general mechanism was adapted to specific habitats and lifestyles. In particular, we demonstrate how environment-sensing characteristics arise from specifically positioned intra- or intermolecular electrostatic interactions. Our integrative approach clarified the exact modus operandi for H-NS-mediated environmental sensing and suggested that this sensing mechanism resulted from the exaptation of an ancestral protein feature.  more » « less
Award ID(s):
1945394
NSF-PAR ID:
10310269
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
10
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. O’Toole, George (Ed.)
    ABSTRACT Transitions between individual and communal lifestyles allow bacteria to adapt to changing environments. Bacteria must integrate information encoded in multiple sensory cues to appropriately undertake these transitions. Here, we investigate how two prevalent sensory inputs converge on biofilm morphogenesis: quorum sensing, which endows bacteria with the ability to communicate and coordinate group behaviors, and second messenger c-di-GMP signaling, which allows bacteria to detect and respond to environmental stimuli. We use Vibrio cholerae as our model system, the autoinducer AI-2 to modulate quorum sensing, and the polyamine norspermidine to modulate NspS-MbaA-mediated c-di-GMP production. Individually, AI-2 and norspermidine drive opposing biofilm phenotypes, with AI-2 repressing and norspermidine inducing biofilm formation. Surprisingly, however, when AI-2 and norspermidine are simultaneously detected, they act synergistically to increase biofilm biomass and biofilm cell density. We show that this effect is caused by quorum-sensing-mediated activation of nspS - mbaA expression, which increases the levels of NspS and MbaA, and in turn, c-di-GMP biosynthesis, in response to norspermidine. Increased MbaA-synthesized c-di-GMP activates the VpsR transcription factor, driving elevated expression of genes encoding key biofilm matrix components. Thus, in the context of biofilm morphogenesis in V. cholerae, quorum-sensing regulation of c-di-GMP-metabolizing receptor levels connects changes in cell population density to detection of environmental stimuli. IMPORTANCE The development of multicellular communities, known as biofilms, facilitates beneficial functions of gut microbiome bacteria and makes bacterial pathogens recalcitrant to treatment. Understanding how bacteria regulate the biofilm life cycle is fundamental to biofilm control in industrial processes and in medicine. Here, we demonstrate how two major sensory inputs—quorum-sensing communication and second messenger c-di-GMP signaling—jointly regulate biofilm morphogenesis in the global pathogen Vibrio cholerae. We characterize the mechanism underlying a surprising synergy between quorum-sensing and c-di-GMP signaling in controlling biofilm development. Thus, the work connects changes in cell population density to detection of environmental stimuli in a pathogen of clinical significance. 
    more » « less
  2. Summary

    Environmental pH can be an important cue for symbiotic bacteria as they colonize their eukaryotic hosts. Using the model mutualism between the marine bacteriumVibrio fischeriand the Hawaiian bobtail squid, we characterized the bacterial transcriptional response to acidic pH experienced during the shift from planktonic to host‐associated lifestyles. We found several genes involved in outer membrane structure were differentially expressed based on pH, indicating alterations in membrane physiology asV. fischeriinitiates its symbiotic program. Exposure to host‐like pH increased the resistance ofV. fischerito the cationic antimicrobial peptide polymixin B, which resembles antibacterial molecules that are produced by the squid to selectV. fischerifrom the ocean microbiota. Using a forward genetic screen, we identified a homolog ofeptA, a predicted phosphoethanolamine transferase, as critical for antimicrobial defense. We used MALDI‐MS to verifyeptAas an ethanolamine transferase for the lipid‐A portion ofV. fischerilipopolysaccharide. We then used a DNA pulldown approach to discover thateptAtranscription is activated by the global regulator H‐NS. Finally, we revealed thateptApromotes successful squid colonization byV. fischeri, supporting its potential role in initiation of this highly specific symbiosis.

     
    more » « less
  3. ABSTRACT The antimicrobial activity and mechanism of silver ions (Ag + ) have gained broad attention in recent years. However, dynamic studies are rare in this field. Here, we report our measurement of the effects of Ag + ions on the dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy (sptPALM). It was found that treating the bacteria with Ag + ions led to faster diffusive dynamics of H-NS proteins. Several techniques were used to understand the mechanism of the observed faster dynamics. Electrophoretic mobility shift assay on purified H-NS proteins indicated that Ag + ions weaken the binding between H-NS proteins and DNA. Isothermal titration calorimetry confirmed that DNA and Ag + ions interact directly. Our recently developed sensing method based on bent DNA suggested that Ag + ions caused dehybridization of double-stranded DNA (i.e., dissociation into single strands). These evidences led us to a plausible mechanism for the observed faster dynamics of H-NS proteins in live bacteria when subjected to Ag + ions: Ag + -induced DNA dehybridization weakens the binding between H-NS proteins and DNA. This work highlighted the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria. IMPORTANCE As so-called “superbug” bacteria resistant to commonly prescribed antibiotics have become a global threat to public health in recent years, noble metals, such as silver, in various forms have been attracting broad attention due to their antimicrobial activities. However, most of the studies in the existing literature have relied on the traditional bioassays for studying the antimicrobial mechanism of silver; in addition, temporal resolution is largely missing for understanding the effects of silver on the molecular dynamics inside bacteria. Here, we report our study of the antimicrobial effect of silver ions at the nanoscale on the diffusive dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy. This work highlights the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria. 
    more » « less
  4. Csikász-Nagy, Attila (Ed.)
    Bacteria use two-component systems (TCSs) to sense environmental conditions and change gene expression in response to those conditions. To amplify cellular responses, many bacterial TCSs are under positive feedback control, i.e. increase their expression when activated. Escherichia coli Mg 2+ -sensing TCS, PhoPQ, in addition to the positive feedback, includes a negative feedback loop via the upregulation of the MgrB protein that inhibits PhoQ. How the interplay of these feedback loops shapes steady-state and dynamical responses of PhoPQ TCS to change in Mg 2+ remains poorly understood. In particular, how the presence of MgrB feedback affects the robustness of PhoPQ response to overexpression of TCS is unclear. It is also unclear why the steady-state response to decreasing Mg 2+ is biphasic, i.e. plateaus over a range of Mg 2+ concentrations, and then increases again at growth-limiting Mg 2+ . In this study, we use mathematical modeling to identify potential mechanisms behind these experimentally observed dynamical properties. The results make experimentally testable predictions for the regime with response robustness and propose a novel explanation of biphasic response constraining the mechanisms for modulation of PhoQ activity by Mg 2+ and MgrB. Finally, we show how the interplay of positive and negative feedback loops affects the network’s steady-state sensitivity and response dynamics. In the absence of MgrB feedback, the model predicts oscillations thereby suggesting a general mechanism of oscillatory or pulsatile dynamics in autoregulated TCSs. These results improve the understanding of TCS signaling and other networks with overlaid positive and negative feedback. 
    more » « less
  5. null (Ed.)
    Abstract H-NS is a nucleoid structuring protein and global repressor of virulence and horizontally-acquired genes in bacteria. H-NS can interact with itself or with homologous proteins, but protein family diversity and regulatory network overlap remain poorly defined. Here, we present a comprehensive phylogenetic analysis that revealed deep-branching clades, dispelling the presumption that H-NS is the progenitor of varied molecular backups. Each clade is composed exclusively of either chromosome-encoded or plasmid-encoded proteins. On chromosomes, stpA and newly discovered hlpP are core genes in specific genera, whereas hfp and newly discovered hlpC are sporadically distributed. Six clades of H-NS plasmid proteins (Hpp) exhibit ancient and dedicated associations with plasmids, including three clades with fidelity for plasmid incompatibility groups H, F or X. A proliferation of H-NS homologs in Erwiniaceae includes the first observation of potentially co-dependent H-NS forms. Conversely, the observed diversification of oligomerization domains may facilitate stable co-existence of divergent homologs in a genome. Transcriptomic and proteomic analysis in Salmonella revealed regulatory crosstalk and hierarchical control of H-NS homologs. We also discovered that H-NS is both a repressor and activator of Salmonella Pathogenicity Island 1 gene expression, and both regulatory modes are restored by Sfh (HppH) in the absence of H-NS. 
    more » « less