Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. While the secreted ligand WntA was shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologues of the Frizzled-family of Wnt receptors. Here we show that CRISPR mosaic knock-outs of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss-of-function in multiple nymphalids. While WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity (PCP) in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning, and shed light on the functional diversity of insect Frizzled receptors.
more »
« less
Engaging the Community in Pollinator Research: The Effect of Wing Pattern and Weather on Butterfly Behavior
Abstract Community science, which engages students and the public in data collection and scientific inquiry, is often integrated into conservation and long-term monitoring efforts. However, it has the potential to also introduce the public to, and be useful for, sensory ecology and other fields of study. Here we describe a community science project that exposes participants to animal behavior and sensory ecology using the rich butterfly community of Northwest Arkansas, United States. Butterflies use visual signals to communicate and to attract mates. Brighter colors can produce stronger signals for mate attraction but can also unintentionally attract negative attention from predators. Environmental conditions such as weather can affect visual signaling as well, by influencing the wavelengths of light available and subsequent signal detection. However, we do not know whether the signals butterflies present correlate broadly with how they behave. In this study, we collaborated with hundreds of students and community members at the University of Arkansas (UARK) and the Botanical Gardens of the Ozarks (BGO) for over 3.5 years to examine relationships among wing pattern, weather, time of day, behavior, and flower choice. We found that both weather and wing color influenced general butterfly behavior. Butterflies were seen feeding more on cloudy days than on sunny or partly cloudy days. Brown butterflies fed or sat more often, while white butterflies flew more often relative to other butterfly colors. We also found that there was an interaction between the effects of weather and wing color on butterfly behavior. Furthermore, butterfly color predicted the choice of flower colors that butterflies visited, though this effect was influenced by the observer group (UARK student or BGO participant). These results suggest that flower choice may be associated with butterfly wing pattern, and that different environmental conditions may influence butterfly behavior in wing-pattern–specific ways. They also illustrate one way that public involvement in behavioral studies can facilitate the identification of coarse-scale, community-wide behavioral patterns, and lay the groundwork for future studies of sensory niches.
more »
« less
- Award ID(s):
- 1937201
- PAR ID:
- 10310399
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 61
- Issue:
- 3
- ISSN:
- 1540-7063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. Thecortexlocus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we nameivory, transcribed from thecortexlocus, in modulating color patterning in butterflies. Strikingly,ivoryexpression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show thativorymutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping ofVanessa carduigermline mutants associates these phenotypes to small on-target deletions at the conserved first exon ofivory. In contrast,cortexgermline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.more » « less
-
Abstract The composition and biodiversity of insect community assemblages are mediated by a complex set of biotic and abiotic factors. Among these factors are forest structure and atmospheric variables (like temperature and humidity), which are heavily influenced by frequent hurricane activity in the Caribbean. Despite this, changes in Caribbean insect assemblages as forests recover from hurricane disturbance are poorly documented. Butterflies represent a charismatic model taxon in biodiversity and conservation, and are thus an ideal subject for exemplifying these shifts in insect abundances and diversity across ecological succession. Here, we monitored butterfly communities in two Puerto Rican forests differing in structure (i.e., canopy height, tree size) to assess butterfly diversity, abundances, and community level wing traits (size and color) over 1 year, beginning 6 months after Hurricane Maria. Monthly sampling over the course of 1 year revealed no relationships between abundances and canopy openness or humidity; instead, species abundances fluctuated seasonally and were nonlinearly correlated with temperature. In contrast, wing size and color were linearly correlated with abiotic variables. Specifically, wings were larger in cooler and more open conditions. Wing color saturation and brightness were negatively correlated with humidity. Our results suggest that, first, a functional approach may provide better insight into the factors mediating species responses to disturbances. Second, further disentangling abundance seasonality from impacts of extreme disturbances necessitates long‐term monitoring. Abstract in Spanish is available with online material.more » « less
-
Chemosensory communication is essential to insect biology, playing indispensable roles during mate-finding, foraging, and oviposition behaviors. These traits are particularly important during speciation, where chemical perception may serve to establish species barriers. However, identifying genes associated with such complex behavioral traits remains a significant challenge. Through a combination of transcriptomic and genomic approaches, we characterize the genetic architecture of chemoperception and the role of chemosensing during speciation for a young species pair of Heliconius butterflies, Heliconius melpomene and Heliconius cydno . We provide a detailed description of chemosensory gene-expression profiles as they relate to sensory tissue (antennae, legs, and mouthparts), sex (male and female), and life stage (unmated and mated female butterflies). Our results untangle the potential role of chemical communication in establishing barriers during speciation and identify strong candidate genes for mate and host plant choice behaviors. Of the 252 chemosensory genes, HmOBP20 (involved in volatile detection) and HmGr56 (a putative synephrine-related receptor) emerge as strong candidates for divergence in pheromone detection and host plant discrimination, respectively. These two genes are not physically linked to wing-color pattern loci or other genomic regions associated with visual mate preference. Altogether, our results provide evidence for chemosensory divergence between H. melpomene and H. cydno , two rarely hybridizing butterflies with distinct mate and host plant preferences, a finding that supports a polygenic architecture of species boundaries.more » « less
-
null (Ed.)Heliconius butterflies have bright patterns on their wings that tell potential predators that they are toxic. As a result, predators learn to avoid eating them. Over time, unrelated species of butterflies have evolved similar patterns to avoid predation through a process known as Müllerian mimicry. Worldwide, there are over 180,000 species of butterflies and moths, most of which have different wing patterns. How do genes create this pattern diversity? And do butterflies use similar genes to create similar wing patterns? One of the genes involved in creating wing patterns is called cortex . This gene has a large region of DNA around it that does not code for proteins, but instead, controls whether cortex is on or off in different parts of the wing. Changes in this non-coding region can act like switches, turning regions of the wing into different colours and creating complex patterns, but it is unclear how these switches have evolved. Butterfly wings get their colour from tiny structures called scales, which each have their own unique set of pigments. In Heliconius butterflies, there are three types of scales: yellow/white scales, black scales, and red/orange/brown scales. Livraghi et al. used a DNA editing technique called CRISPR to find out whether the cortex gene affects scale type. First, Livraghi et al. confirmed that deleting cortex turned black and red scales yellow. Next, they used the same technique to manipulate the non-coding DNA around the cortex gene to see the effect on the wing pattern. This manipulation turned a black-winged butterfly into a butterfly with a yellow wing band, a pattern that occurs naturally in Heliconius butterflies. The next step was to find the mutation responsible for the appearance of yellow wing bands in nature. It turns out that a bit of extra genetic code, derived from so-called ‘jumping genes’, had inserted itself into the non-coding DNA around the cortex gene, ‘flipping’ the switch and leading to the appearance of the yellow scales. Genetic information contains the instructions to generate shape and form in most organisms. These instructions evolve over millions of years, creating everything from bacteria to blue whales. Butterfly wings are visual evidence of evolution, but the way their genes create new patterns isn't specific to butterflies. Understanding wing patterns can help researchers to learn how genetic switches control diversity across other species too.more » « less
An official website of the United States government

