skip to main content


Title: Frizzled2 receives WntA signaling during butterfly wing pattern formation

Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. While the secreted ligand WntA was shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologues of the Frizzled-family of Wnt receptors. Here we show that CRISPR mosaic knock-outs of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss-of-function in multiple nymphalids. While WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity (PCP) in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning, and shed light on the functional diversity of insect Frizzled receptors.

 
more » « less
Award ID(s):
1656389 2110534 1656553 2110532 2109536
NSF-PAR ID:
10443870
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Development
ISSN:
0950-1991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The forewings and hindwings of butterflies and moths (Lepidoptera) are differentiated from each other, with segment-specific morphologies and color patterns that mediate a wide range of functions in flight, signaling, and protection. The Hox gene Ultrabithorax ( Ubx ) is a master selector gene that differentiates metathoracic from mesothoracic identities across winged insects, and previous work has shown this role extends to at least some of the color patterns from the butterfly hindwing. Here we used CRISPR targeted mutagenesis to generate Ubx loss-of-function somatic mutations in two nymphalid butterflies ( Junonia coenia , Vanessa cardui ) and a pyralid moth ( Plodia interpunctella ). The resulting mosaic clones yielded hindwing-to-forewing transformations, showing Ubx is necessary for specifying many aspects of hindwing-specific identities, including scale morphologies, color patterns, and wing venation and structure. These homeotic phenotypes showed cell-autonomous, sharp transitions between mutant and non-mutant scales, except for clones that encroached into the border ocelli (eyespots) and resulted in composite and non-autonomous effects on eyespot ring determination. In the pyralid moth, homeotic clones converted the folding and depigmented hindwing into rigid and pigmented composites, affected the wing-coupling frenulum, and induced ectopic scent-scales in male androconia. These data confirm Ubx is a master selector of lepidopteran hindwing identity and suggest it acts on many gene regulatory networks involved in wing development and patterning. 
    more » « less
  2. Abstract Background

    Wnt genes code for ligands that activate signaling pathways during development in Metazoa. Through the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development, such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate segment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly compact and miniaturized tardigrade body plan.

    Results

    We analyzed published genomes for two representatives of Tardigrada,Hypsibius exemplarisandRamazzottius varieornatus. We identified single orthologs ofWnt4,Wnt5,Wnt9,Wnt11, andWntA, as well as twoWnt16paralogs in both tardigrade genomes. We only found aWnt2ortholog inH. exemplaris. We could not identify orthologs ofWnt1,Wnt6,Wnt7,Wnt8, orWnt10. We identified most other components of cWnt signaling in both tardigrade genomes. However, we were unable to identify an ortholog ofarrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily miniaturized, like tardigrades, are also missing an ortholog ofarrow/Lrp5/6. We analyzed the embryonic expression patterns of Wnt genes inH. exemplarisduring developmental stages that span the establishment of the AP axis through segmentation and leg development. We detected expression of all Wnt genes inH. exemplarisbesides one of theWnt16paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and development of legs inH. exemplaris, rather than in broadly overlapping patterns.

    Conclusions

    Our results indicate that Wnt signaling has been highly modified in Tardigrada. While most components of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lostWnt1,Wnt6,Wnt7,Wnt8, andWnt10, along witharrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specifying posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial interactions among Wnt genes are less important during tardigrade development compared to many other animals. Based on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomical simplification in this lineage.

     
    more » « less
  3. null (Ed.)
    Müllerian mimicry strongly exemplifies the power of natural selection. However, the exact measure of such adaptive phenotypic convergence and the possible causes of its imperfection often remain unidentified. Here, we first quantify wing colour pattern differences in the forewing region of 14 co-mimetic colour pattern morphs of the butterfly species Heliconius erato and Heliconius melpomene and measure the extent to which mimicking colour pattern morphs are not perfectly identical. Next, using gene-editing CRISPR/Cas9 KO experiments of the gene WntA , which has been mapped to colour pattern diversity in these butterflies, we explore the exact areas of the wings in which WntA affects colour pattern formation differently in H. erato and H. melpomene. We find that, while the relative size of the forewing pattern is generally nearly identical between co-mimics, the CRISPR/Cas9 KO results highlight divergent boundaries in the wing that prevent the co-mimics from achieving perfect mimicry. We suggest that this mismatch may be explained by divergence in the gene regulatory network that defines wing colour patterning in both species, thus constraining morphological evolution even between closely related species. 
    more » « less
  4. ABSTRACT Background

    The color patterns that adorn lepidopteran wings are ideal for studying cell type diversity using a phenomics approach. Color patterns are made of chitinous scales that are each the product of a single precursor cell, offering a 2D system where phenotypic diversity can be studied cell by cell, both within and between species. Those scales reveal complex ultrastructures in the sub‐micrometer range that are often connected to a photonic function, including iridescent blues and greens, highly reflective whites, or light‐trapping blacks.

    Results

    We found that during scale development, Fascin immunostainings reveal punctate distributions consistent with a role in the control of actin patterning. We quantified the cytoskeleton regularity as well as its relationship to chitin deposition sites, and confirmed a role in the patterning of the ultrastructures of the adults scales. Then, in an attempt to characterize the range and variation in lepidopteran scale ultrastructures, we devised a high‐throughput method to quickly derive multiple morphological measurements from fluorescence images and scanning electron micrographs. We imaged a multicolor eyespot element from the butterflyVanessa cardui(V. cardui), taking approximately 200 000 individual measurements from 1161 scales. Principal component analyses revealed that scale structural features cluster by color type, and detected the divergence of non‐reflective scales characterized by tighter cross‐rib distances and increased orderedness.

    Conclusion

    We developed descriptive methods that advance the potential of butterfly wing scales as a model system for studying how a single cell type can differentiate into a multifaceted spectrum of complex morphologies. Our data suggest that specific color scales undergo a tight regulation of their ultrastructures, and that this involves cytoskeletal dynamics during scale growth.

     
    more » « less
  5. Abstract

    Lepidopteran wing scales play important roles in a number of functions including color patterning and thermoregulation. Despite the importance of wing scales, however, we still have a limited understanding of the genetic mechanisms that underlie scale patterning, development, and coloration. Here, we explore the function of the phenoloxidase‐encoding genelaccase2in wing and scale development in the nymphalid butterflyVanessa cardui. Somatic deletion mosaics oflaccase2generated by CRISPR/Cas9 genome editing presented several distinct mutant phenotypes. Consistent with the work in other nonlepidopteran insect groups, we observed reductions in melanin pigmentation and defects in cuticle formation. We were also surprised, however, to see distinct effects on scale development including complete loss of wing scales. This study highlightslaccase2as a gene that plays multiple roles in wing and scale development and provides new insight into the evolution of lepidopteran wing coloration.

     
    more » « less