skip to main content


Title: RubberBand: cloud-based hyperparameter tuning
Hyperparameter tuning is essential to achieving state-of-the-art accuracy in machine learning (ML), but requires substantial compute resources to perform. Existing systems primarily focus on effectively allocating resources for a hyperparameter tuning job under fixed resource constraints. We show that the available parallelism in such jobs changes dynamically over the course of execution and, therefore, presents an opportunity to leverage the elasticity of the cloud. In particular, we address the problem of minimizing the financial cost of executing a hyperparameter tuning job, subject to a time constraint. We present RubberBand---the first framework for cost-efficient, elastic execution of hyperparameter tuning jobs in the cloud. RubberBand utilizes performance instrumentation and cloud pricing to model job completion time and cost prior to runtime, and generate a cost-efficient, elastic resource allocation plan. RubberBand is able to efficiently execute this plan and realize a cost reduction of up to 2x in comparison to static allocation baselines.  more » « less
Award ID(s):
1730628
NSF-PAR ID:
10310457
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
EuroSys '21: Proceedings of the Sixteenth European Conference on Computer Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hyperparameter tuning is a necessary step in training and deploying machine learning models. Most prior work on hyperparameter tuning has studied methods for maximizing model accuracy under a time constraint, assuming a fixed cluster size. While this is appropriate in data center environments, the increased deployment of machine learning workloads in cloud settings necessitates studying hyperparameter tuning with an elastic cluster size and time and monetary budgets. While recent work has leveraged the elasticity of the cloud to minimize the execution cost of a pre-determined hyperparameter tuning job originally designed for fixed-cluster sizes, they do not aim to maximize accuracy. In this work, we aim to maximize accuracy given time and cost constraints. We introduce SEER---Sequential Elimination with Elastic Resources, an algorithm that tests different hyperparameter values in the beginning and maintains varying degrees of parallelism among the promising configurations to ensure that they are trained sufficiently before the deadline. Unlike fixed cluster size methods, it is able to exploit the flexibility in resource allocation the elastic setting has to offer in order to avoid undesirable effects of sublinear scaling. Furthermore, SEER can be easily integrated into existing systems and makes minimal assumptions about the workload. On a suite of benchmarks, we demonstrate that SEER outperforms both existing methods for hyperparameter tuning on a fixed cluster as well as naive extensions of these algorithms to the cloud setting. 
    more » « less
  2. Cloud platforms are increasing their emphasis on sustainability and reducing their operational carbon footprint. A common approach for reducing carbon emissions is to exploit the temporal flexibility inherent to many cloud workloads by executing them in periods with the greenest energy and suspending them at other times. Since such suspend-resume approaches can incur long delays in job completion times, we present a new approach that exploits the elasticity of batch workloads in the cloud to optimize their carbon emissions. Our approach is based on the notion of carbon scaling, similar to cloud autoscaling, where a job dynamically varies its server allocation based on fluctuations in the carbon cost of the grid's energy. We develop a greedy algorithm for minimizing a job's carbon emissions via carbon scaling that is based on the well-known problem of marginal resource allocation. We implement a CarbonScaler prototype in Kubernetes using its autoscaling capabilities and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We then evaluate CarbonScaler using real-world machine learning training and MPI jobs on a commercial cloud platform and show that it can yield i) 51% carbon savings over carbon-agnostic execution; ii) 37% over a state-of-the-art suspend-resume policy; and iii) 8 over the best static scaling policy.

     
    more » « less
  3. null (Ed.)
    High-throughput computing (HTC) workloads seek to complete as many jobs as possible over a long period of time. Such workloads require efficient execution of many parallel jobs and can occupy a large number of resources for a longtime. As a result, full utilization is the normal state of an HTC facility. The widespread use of container orchestrators eases the deployment of HTC frameworks across different platforms,which also provides an opportunity to scale up HTC workloads with almost infinite resources on the public cloud. However, the autoscaling mechanisms of container orchestrators are primarily designed to support latency-sensitive microservices, and result in unexpected behavior when presented with HTC workloads. In this paper, we design a feedback autoscaler, High Throughput Autoscaler (HTA), that leverages the unique characteristics ofthe HTC workload to autoscales the resource pools used by HTC workloads on container orchestrators. HTA takes into account a reference input, the real-time status of the jobs’ queue, as well as two feedback inputs, resource consumption of jobs, and the resource initialization time of the container orchestrator. We implement HTA using the Makeflow workload manager, WorkQueue job scheduler, and the Kubernetes cluster manager. We evaluate its performance on both CPU-bound and IO-bound workloads. The evaluation results show that, by using HTA, we improve resource utilization by 5.6×with a slight increase in execution time (about 15%) for a CPU-bound workload, and shorten the workload execution time by up to 3.65×for an IO-bound workload. 
    more » « less
  4. As the popularity of quantum computing continues to grow, quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis of resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing. This paper is a first-of-its-kind academic study, analyzing various trends in job execution and resources consumption / utilization on quantum cloud systems. We focus on IBM Quantum systems and analyze characteristics over a two year period, encompassing over 6000 jobs which contain over 600,000 quantum circuit executions and correspond to almost 10 billion “shots” or trials over 20+ quantum machines. Specifically, we analyze trends focused on, but not limited to, execution times on quantum machines, queuing/waiting times in the cloud, circuit compilation times, machine utilization, as well as the impact of job and machine characteristics on all of these trends. Our analysis identifies several similarities and differences with classical HPC cloud systems. Based on our insights, we make recommendations and contributions to improve the management of resources and jobs on future quantum cloud systems. 
    more » « less
  5. As the popularity of quantum computing continues to grow, efficient quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis and optimization of job / resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing.This paper proposes optimized adaptive job scheduling to the quantum cloud taking note of primary characteristics such as queuing times and fidelity trends across machines, as well as other characteristics such as quality of service guarantees and machine calibration constraints. Key components of the proposal include a) a prediction model which predicts fidelity trends across machine based on compiled circuit features such as circuit depth and different forms of errors, as well as b) queuing time prediction for each machine based on execution time estimations.Overall, this proposal is evaluated on simulated IBM machines across a diverse set of quantum applications and system loading scenarios, and is able to reduce wait times by over 3x and improve fidelity by over 40% on specific usecases, when compared to traditional job schedulers. 
    more » « less