As the popularity of quantum computing continues to grow, efficient quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis and optimization of job / resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing.This paper proposes optimized adaptive job scheduling to the quantum cloud taking note of primary characteristics such as queuing times and fidelity trends across machines, as well as other characteristics such as quality of service guarantees and machine calibration constraints. Key components of the proposal include a) a prediction model which predicts fidelity trends across machine based on compiled circuit features such as circuit depth and different forms of errors, as well as b) queuing time prediction for each machine based on execution time estimations.Overall, this proposal is evaluated on simulated IBM machines across a diverse set of quantum applications and system loading scenarios, and is able to reduce wait times by over 3x and improve fidelity by over 40% on specific usecases, when compared to traditional job schedulers. 
                        more » 
                        « less   
                    
                            
                            Adaptive Circuit Learning for Quantum Metrology
                        
                    
    
            As the popularity of quantum computing continues to grow, efficient quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis and optimization of job / resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing.This paper proposes optimized adaptive job scheduling to the quantum cloud taking note of primary characteristics such as queuing times and fidelity trends across machines, as well as other characteristics such as quality of service guarantees and machine calibration constraints. Key components of the proposal include a) a prediction model which predicts fidelity trends across machine based on compiled circuit features such as circuit depth and different forms of errors, as well as b) queuing time prediction for each machine based on execution time estimations.Overall, this proposal is evaluated on simulated IBM machines across a diverse set of quantum applications and system loading scenarios, and is able to reduce wait times by over 3x and improve fidelity by over 40% on specific usecases, when compared to traditional job schedulers. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10313467
- Date Published:
- Journal Name:
- 2021 IEEE International Conference on Quantum Computing and Engineering (QCE)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            As the popularity of quantum computing continues to grow, quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis of resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing. This paper is a first-of-its-kind academic study, analyzing various trends in job execution and resources consumption / utilization on quantum cloud systems. We focus on IBM Quantum systems and analyze characteristics over a two year period, encompassing over 6000 jobs which contain over 600,000 quantum circuit executions and correspond to almost 10 billion “shots” or trials over 20+ quantum machines. Specifically, we analyze trends focused on, but not limited to, execution times on quantum machines, queuing/waiting times in the cloud, circuit compilation times, machine utilization, as well as the impact of job and machine characteristics on all of these trends. Our analysis identifies several similarities and differences with classical HPC cloud systems. Based on our insights, we make recommendations and contributions to improve the management of resources and jobs on future quantum cloud systems.more » « less
- 
            null (Ed.)High-throughput computing (HTC) workloads seek to complete as many jobs as possible over a long period of time. Such workloads require efficient execution of many parallel jobs and can occupy a large number of resources for a longtime. As a result, full utilization is the normal state of an HTC facility. The widespread use of container orchestrators eases the deployment of HTC frameworks across different platforms,which also provides an opportunity to scale up HTC workloads with almost infinite resources on the public cloud. However, the autoscaling mechanisms of container orchestrators are primarily designed to support latency-sensitive microservices, and result in unexpected behavior when presented with HTC workloads. In this paper, we design a feedback autoscaler, High Throughput Autoscaler (HTA), that leverages the unique characteristics ofthe HTC workload to autoscales the resource pools used by HTC workloads on container orchestrators. HTA takes into account a reference input, the real-time status of the jobs’ queue, as well as two feedback inputs, resource consumption of jobs, and the resource initialization time of the container orchestrator. We implement HTA using the Makeflow workload manager, WorkQueue job scheduler, and the Kubernetes cluster manager. We evaluate its performance on both CPU-bound and IO-bound workloads. The evaluation results show that, by using HTA, we improve resource utilization by 5.6×with a slight increase in execution time (about 15%) for a CPU-bound workload, and shorten the workload execution time by up to 3.65×for an IO-bound workload.more » « less
- 
            Quantum Computing has attracted much research attention because of its potential to achieve fundamental speed and efficiency improvements in various domains. Among different quantum algorithms, Parameterized Quantum Circuits (PQC) for Quantum Machine Learning (QML) show promises to realize quantum advantages on the current Noisy Intermediate-Scale Quantum (NISQ) Machines. Therefore, to facilitate the QML and PQC research, a recent python library called TorchQuantum has been released. It can construct, simulate, and train PQC for machine learning tasks with high speed and convenient debugging supports. Besides quantum for ML, we want to raise the community's attention on the reversed direction: ML for quantum. Specifically, the TorchQuantum library also supports using data-driven ML models to solve problems in quantum system research, such as predicting the impact of quantum noise on circuit fidelity and improving the quantum circuit compilation efficiency. This paper presents a case study of the ML for quantum part in TorchQuantum. Since estimating the noise impact on circuit reliability is an essential step toward understanding and mitigating noise, we propose to leverage classical ML to predict noise impact on circuit fidelity. Inspired by the natural graph representation of quantum circuits, we propose to leverage a graph transformer model to predict the noisy circuit fidelity. We firstly collect a large dataset with a variety of quantum circuits and obtain their fidelity on noisy simulators and real machines. Then we embed each circuit into a graph with gate and noise properties as node features, and adopt a graph transformer to predict the fidelity. We can avoid exponential classical simulation cost and efficiently estimate fidelity with polynomial complexity. Evaluated on 5 thousand random and algorithm circuits, the graph transformer predictor can provide accurate fidelity estimation with RMSE error 0.04 and outperform a simple neural network-based model by 0.02 on average. It can achieve 0.99 and 0.95 R2 scores for random and algorithm circuits, respectively. Compared with circuit simulators, the predictor has over 200× speedup for estimating the fidelity. The datasets and predictors can be accessed in the TorchQuantum library.more » « less
- 
            Variational Quantum Algorithms (VQA) are one of the most promising candidates for near-term quantum advantage. Traditionally, these algorithms are parameterized by rotational gate angles whose values are tuned over iterative execution on quantum machines. The iterative tuning of these gate angle parameters make VQAs more robust to a quantum machine’s noise profile. However, the effect of noise is still a significant detriment to VQA’s target estimations on real quantum machines — they are far from ideal. Thus, it is imperative to employ effective error mitigation strategies to improve the fidelity of these quantum algorithms on near-term machines.While existing error mitigation techniques built from theory do provide substantial gains, the disconnect between theory and real machine execution characteristics limit the scope of these improvements. Thus, it is critical to optimize mitigation techniques to explicitly suit the target application as well as the noise characteristics of the target machine.We propose VAQEM, which dynamically tailors existing error mitigation techniques to the actual, dynamic noisy execution characteristics of VQAs on a target quantum machine. We do so by tuning specific features of these mitigation techniques similar to the traditional rotation angle parameters -by targeting improvements towards a specific objective function which represents the VQA problem at hand. In this paper, we target two types of error mitigation techniques which are suited to idle times in quantum circuits: single qubit gate scheduling and the insertion of dynamical decoupling sequences. We gain substantial improvements to VQA objective measurements — a mean of over 3x across a variety of VQA applications, run on IBM Quantum machines.More importantly, while we study two specific error mitigation techniques, the proposed variational approach is general and can be extended to many other error mitigation techniques whose specific configurations are hard to select a priori. Integrating more mitigation techniques into the VAQEM framework in the future can lead to further formidable gains, potentially realizing practically useful VQA benefits on today’s noisy quantum machines.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    