skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: S-SOM v1.0: a structural self-organizing map algorithm for weather typing
Abstract. This study proposes a novel structural self-organizingmap (S-SOM) algorithm for synoptic weather typing. A novel feature of theS-SOM compared with traditional SOMs is its ability to deal with input datawith spatial or temporal structures. In detail, the search scheme for thebest matching unit (BMU) in a S-SOM is built based on a structuralsimilarity (S-SIM) index rather than by using the traditional Euclideandistance (ED). S-SIM enables the BMU search to consider the correlation inspace between weather states, such as the locations of highs or lows, that is impossible when using ED. The S-SOM performance is evaluated by multipledemo simulations of clustering weather patterns over Japan using theERA-Interim sea-level pressure data. The results show the S-SOM'ssuperiority compared with a standard SOM with ED (or ED-SOM) in tworespects: clustering quality based on silhouette analysis and topologicalpreservation based on topological error. Better performance of S-SOM versusED is consistent with results from different tests and node-sizeconfigurations. S-SOM performs better than a SOM using the Pearsoncorrelation coefficient (or COR-SOM), though the difference is not as clear as it is compared to ED-SOM.  more » « less
Award ID(s):
1739705
PAR ID:
10310476
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
14
Issue:
4
ISSN:
1991-9603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Traditional network embedding primarily focuses on learning a continuous vector representation for each node, preserving network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned continuous vector representations are inefficient for large-scale similarity search, which often involves finding nearest neighbors measured by distance or similarity in a continuous vector space. In this article, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations using a stochastic gradient descent-based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support faster node similarity search than using Euclidean or other distance measures. Extensive experiments and comparisons demonstrate that BinaryNE not only delivers more than 25 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods. The binary codes learned by BinaryNE also render competitive performance on node classification and node clustering tasks. The source code of the BinaryNE algorithm is available at https://github.com/daokunzhang/BinaryNE. 
    more » « less
  2. Abstract The development of deep learning (DL) weather forecasting models has made rapid progress and achieved comparable or better skill than traditional Numerical Weather prediction (NWP) models, which are generally computationally intensive. However, applications of these DL models have yet to be fully explored, including for severe convective events. We evaluate the DL model Pangu‐Weather in forecasting tornadic environments with one‐day lead times using convective available potential energy (CAPE), 0–6 bulk wind difference (BWD6), and 0–3 km storm‐relative helicity (SRH3). We also compare its performance to the National Centers for Environmental Prediction (NCEP)'s Global Forecast System (GFS), a traditional NWP model. Pangu‐Weather generally outperforms GFS in predicting BWD6 and SRH3 at the closest grid point and hour of the storm report. However, Pangu‐Weather tends to underpredict the maximum values of all convective parameters in the 1–2 hr before the storm across the surrounding grid points compared to the GFS. 
    more » « less
  3. Evacuation planning is a crucial part of disaster management. However, joint optimization of its two essential components, routing and scheduling, with objectives such as minimizing average evacuation time or evacuation completion time, is a computationally hard problem. To approach it, we present MIP-LNS, a scalable optimization method that utilizes heuristic search with mathematical optimization and can optimize a variety of objective functions. We also present the method MIPLNS-SIM, where we combine agent-based simulation with MIP-LNS to estimate delays due to congestion, as well as, find optimized plans considering such delays. We use Harris County in Houston, Texas, as our study area. We show that, within a given time limit, MIP-LNS finds better solutions than existing methods in terms of three different metrics. However, when congestion dependent delay is considered, MIP-LNS-SIM outperforms MIP-LNS in multiple performance metrics. In addition, MIP-LNS-SIM has a significantly lower percent error in estimated evacuation completion time compared to MIP-LNS. 
    more » « less
  4. The non-stationary nature of data streams strongly challenges traditional machine learning techniques. Although some solutions have been proposed to extend traditional machine learning techniques for handling data streams, these approaches either require an initial label set or rely on specialized design parameters. The overlap among classes and the labeling of data streams constitute other major challenges for classifying data streams. In this paper, we proposed a clustering-based data stream classification framework to handle non-stationary data streams without utilizing an initial label set. A density-based stream clustering procedure is used to capture novel concepts with a dynamic threshold and an effective active label querying strategy is introduced to continuously learn the new concepts from the data streams. The sub-cluster structure of each cluster is explored to handle the overlap among classes. Experimental results and quantitative comparison studies reveal that the proposed method provides statistically better or comparable performance than the existing methods. 
    more » « less
  5. Abstract Emerging research suggests that internet search patterns may provide timely, actionable insights into adverse health impacts from, and behavioral responses to, days of extreme heat, but few studies have evaluated this hypothesis, and none have done so across the United States. We used two-stage distributed lag nonlinear models to quantify the interrelationships between daily maximum ambient temperature, internet search activity as measured by Google Trends, and heat-related emergency department (ED) visits among adults with commercial health insurance in 30 US metropolitan areas during the warm seasons (May to September) from 2016 to 2019. Maximum daily temperature was positively associated with internet searches relevant to heat, and searches were in turn positively associated with heat-related ED visits. Moreover, models combining internet search activity and temperature had better predictive ability for heat-related ED visits compared to models with temperature alone. These results suggest that internet search patterns may be useful as a leading indicator of heat-related illness or stress. 
    more » « less