skip to main content

Title: Search Efficient Binary Network Embedding
Traditional network embedding primarily focuses on learning a continuous vector representation for each node, preserving network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned continuous vector representations are inefficient for large-scale similarity search, which often involves finding nearest neighbors measured by distance or similarity in a continuous vector space. In this article, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations using a stochastic gradient descent-based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support faster node similarity search than using Euclidean or other distance measures. Extensive experiments and comparisons demonstrate that BinaryNE not only delivers more than 25 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods. The binary codes learned by BinaryNE also render competitive performance on node classification and node clustering tasks. The more » source code of the BinaryNE algorithm is available at « less
; ; ;
Award ID(s):
1763452 1828181
Publication Date:
Journal Name:
ACM Transactions on Knowledge Discovery from Data
Page Range or eLocation-ID:
1 to 27
Sponsoring Org:
National Science Foundation
More Like this
  1. We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning.more »The source code is available at« less
  2. Persistence diagrams have been widely used to quantify the underlying features of filtered topological spaces in data visualization. In many applications, computing distances between diagrams is essential; however, computing these distances has been challenging due to the computational cost. In this paper, we propose a persistence diagram hashing framework that learns a binary code representation of persistence diagrams, which allows for fast computation of distances. This framework is built upon a generative adversarial network (GAN) with a diagram distance loss function to steer the learning process. Instead of using standard representations, we hash diagrams into binary codes, which have natural advantages in large-scale tasks. The training of this model is domain-oblivious in that it can be computed purely from synthetic, randomly created diagrams. As a consequence, our proposed method is directly applicable to various datasets without the need for retraining the model. These binary codes, when compared using fast Hamming distance, better maintain topological similarity properties between datasets than other vectorized representations. To evaluate this method, we apply our framework to the problem of diagram clustering and we compare the quality and performance of our approach to the state-of-the-art. In addition, we show the scalability of our approach on amore »dataset with 10k persistence diagrams, which is not possible with current techniques. Moreover, our experimental results demonstrate that our method is significantly faster with the potential of less memory usage, while retaining comparable or better quality comparisons.« less
  3. Defect prediction aims to automatically identify potential defective code with minimal human intervention and has been widely studied in the literature. Just-in-Time (JIT) defect prediction focuses on program changes rather than whole programs, and has been widely adopted in continuous testing. CC2Vec, state-of-the-art JIT defect prediction tool, first constructs a hierarchical attention network (HAN) to learn distributed vector representations of both code additions and deletions, and then concatenates them with two other embedding vectors representing commit messages and overall code changes extracted by the existing DeepJIT approach to train a model for predicting whether a given commit is defective. Although CC2Vec has been shown to be the state of the art for JIT defect prediction, it was only evaluated on a limited dataset and not compared with all representative baselines. Therefore, to further investigate the efficacy and limitations of CC2Vec, this paper performs an extensive study of CC2Vec on a large-scale dataset with over 310,370 changes (8.3 X larger than the original CC2Vec dataset). More specifically, we also empirically compare CC2Vec against DeepJIT and representative traditional JIT defect prediction techniques. The experimental results show that CC2Vec cannot consistently outperform DeepJIT, and neither of them can consistently outperform traditional JIT defectmore »prediction. We also investigate the impact of individual traditional defect prediction features and find that the added-line-number feature outperforms other traditional features. Inspired by this finding, we construct a simplistic JIT defect prediction approach which simply adopts the added-line- number feature with the logistic regression classifier. Surprisingly, such a simplistic approach can outperform CC2Vec and DeepJIT in defect prediction, and can be 81k X/120k X faster in training/testing. Furthermore, the paper also provides various practical guidelines for advancing JIT defect prediction in the near future.« less
  4. Martelli, Pier Luigi (Ed.)
    Abstract Motivation The complete characterization of enzymatic activities between molecules remains incomplete, hindering biological engineering and limiting biological discovery. We develop in this work a technique, enzymatic link prediction (ELP), for predicting the likelihood of an enzymatic transformation between two molecules. ELP models enzymatic reactions cataloged in the KEGG database as a graph. ELP is innovative over prior works in using graph embedding to learn molecular representations that capture not only molecular and enzymatic attributes but also graph connectivity. Results We explore transductive (test nodes included in the training graph) and inductive (test nodes not part of the training graph) learning models. We show that ELP achieves high AUC when learning node embeddings using both graph connectivity and node attributes. Further, we show that graph embedding improves link prediction by 30% in area under curve over fingerprint-based similarity approaches and by 8% over support vector machines. We compare ELP against rule-based methods. We also evaluate ELP for predicting links in pathway maps and for reconstruction of edges in reaction networks of four common gut microbiota phyla: actinobacteria, bacteroidetes, firmicutes and proteobacteria. To emphasize the importance of graph embedding in the context of biochemical networks, we illustrate how graph embedding canmore »guide visualization. Availability and implementation The code and datasets are available through« less
  5. Graphs/Networks are common in real-world applications where data have rich content and complex relationships. The increasing popularity also motivates many network learning algorithms, such as community detection, clustering, classification, and embedding learning, etc.. In reality, the large network volumes often hider a direct use of learning algorithms to the graphs. As a result, it is desirable to have the flexibility to condense a network to an arbitrary size, with well-preserved network topology and node content information. In this paper, we propose a graph compression network (GEN) to achieve network compression and embedding at the same time. Our theme is to leverage the network topology to find node mappings, such that densely connected nodes, including their node content, are compressed as a new node, with a latent vector (i.e. embedding) being learned to represent the compressed node. In addition to compression learning, we also develop a novel encoding-decoding framework, using feature diffusion process, to "decompress" the condensed network. Different from traditional graph convolution which uses direct-neighbor message passing, our decompression advocates high-order message passing within compressed nodes to learning feature representation for all nodes in the network. A unique strength of GEN is that it leverages the graph neural network principlemore »to learn mapping automatically, so one can compress a network to an arbitrary size, and also decompress it to the original node space with minimum information loss. Experiments and comparisons confirm that GEN can automatically find clusters and communities, and compress them as new nodes. Results also show that GEN achieves improved performance for numerous tasks, including graph classification and node clustering.« less