skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating Sparse Discrete Distributions Under Privacy and Communication Constraints
We consider the problem of estimating sparse discrete distributions under local differential privacy (LDP) and communication constraints. We characterize the sample complexity for sparse estimation under LDP constraints up to a constant factor, and the sample complexity under communication constraints up to a logarithmic factor. Our upper bounds under LDP are based on the Hadamard Response, a private coin scheme that requires only one bit of communication per user. Under communication constraints we propose public coin schemes based on random hashing functions. Our tight lower bounds are based on recently proposed method of chi squared contractions.  more » « less
Award ID(s):
1815893 1846300 1657471
PAR ID:
10310531
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
132
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study robust testing and estimation of discrete distributions in the strong contamination model. Our results cover both centralized setting and distributed setting with general local information constraints including communication and LDP constraints. Our technique relates the strength of manipulation attacks to the earth-mover distance using Hamming distance as the metric between messages (samples) from the users. In the centralized setting, we provide optimal error bounds for both learning and testing. Our lower bounds under local information constraints build on the recent lower bound methods in distributed inference. In the communication constrained setting, we develop novel algorithms based on random hashing and an L1-L1 isometry. 
    more » « less
  2. In a recent work (Ghazi et al., SODA 2016), the authors with Komargodski and Kothari initiated the study of communication with contextual uncertainty, a setup aiming to understand how efficient communication is possible when the communicating parties imperfectly share a huge context. In this setting, Alice is given a function f and an input string x, and Bob is given a function g and an input string y. The pair (x,y) comes from a known distribution mu and f and g are guaranteed to be close under this distribution. Alice and Bob wish to compute g(x,y) with high probability. The lack of agreement between Alice and Bob on the function that is being computed captures the uncertainty in the context. The previous work showed that any problem with one-way communication complexity k in the standard model (i.e., without uncertainty, in other words, under the promise that f=g) has public-coin communication at most O(k(1+I)) bits in the uncertain case, where I is the mutual information between x and y. Moreover, a lower bound of Omega(sqrt{I}) bits on the public-coin uncertain communication was also shown. However, an important question that was left open is related to the power that public randomness brings to uncertain communication. Can Alice and Bob achieve efficient communication amid uncertainty without using public randomness? And how powerful are public-coin protocols in overcoming uncertainty? Motivated by these two questions: - We prove the first separation between private-coin uncertain communication and public-coin uncertain communication. Namely, we exhibit a function class for which the communication in the standard model and the public-coin uncertain communication are O(1) while the private-coin uncertain communication is a growing function of n (the length of the inputs). This lower bound (proved with respect to the uniform distribution) is in sharp contrast with the case of public-coin uncertain communication which was shown by the previous work to be within a constant factor from the certain communication. This lower bound also implies the first separation between public-coin uncertain communication and deterministic uncertain communication. Interestingly, we also show that if Alice and Bob imperfectly share a sequence of random bits (a setup weaker than public randomness), then achieving a constant blow-up in communication is still possible. - We improve the lower-bound of the previous work on public-coin uncertain communication. Namely, we exhibit a function class and a distribution (with mutual information I approx n) for which the one-way certain communication is k bits but the one-way public-coin uncertain communication is at least Omega(sqrt{k}*sqrt{I}) bits. Our proofs introduce new problems in the standard communication complexity model and prove lower bounds for these problems. Both the problems and the lower bound techniques may be of general interest. 
    more » « less
  3. Single-Index Models are high-dimensional regression problems with planted structure, whereby labels depend on an unknown one-dimensional projection of the input via a generic, non-linear, and potentially non-deterministic transformation. As such, they encompass a broad class of statistical inference tasks, and provide a rich template to study statistical and computational trade-offs in the high-dimensional regime. While the information-theoretic sample complexity to recover the hidden direction is lin- ear in the dimension d, we show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require Ω(dk⋆/2) samples, where k⋆ is a “generative” exponent associated with the model that we explicitly characterize. Moreover, we show that this sample complexity is also sufficient, by establishing matching upper bounds using a partial-trace algorithm. Therefore, our results pro- vide evidence of a sharp computational-to-statistical gap (under both the SQ and LDP class) whenever k⋆ > 2. To complete the study, we construct smooth and Lipschitz deterministic target functions with arbitrarily large generative exponents k⋆. 
    more » « less
  4. We study the fundamental problems of identity testing (goodness of fit), and closeness testing (two sample test) of distributions over k elements, under differential privacy. While the problems have a long history in statistics, finite sample bounds for these problems have only been established recently. In this work, we derive upper and lower bounds on the sample complexity of both the problems under (epsilon, delta)-differential privacy. We provide sample optimal algorithms for identity testing problem for all parameter ranges, and the first results for closeness testing. Our closeness testing bounds are optimal in the sparse regime where the number of samples is at most k. Our upper bounds are obtained by privatizing non-private estimators for these problems. The non-private estimators are chosen to have small sensitivity. We propose a general framework to establish lower bounds on the sample complexity of statistical tasks under differential privacy. We show a bound on di erentially private algorithms in terms of a coupling between the two hypothesis classes we aim to test. By carefully constructing chosen priors over the hypothesis classes, and using Le Cam’s two point theorem we provide a general mechanism for proving lower bounds. We believe that the framework can be used to obtain strong lower bounds for other statistical tasks under privacy. 
    more » « less
  5. Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)
    We study discrete distribution estimation under user-level local differential privacy (LDP). In user-level $$\varepsilon$$-LDP, each user has $$m\ge1$$ samples and the privacy of all $$m$$ samples must be preserved simultaneously. We resolve the following dilemma: While on the one hand having more samples per user should provide more information about the underlying distribution, on the other hand, guaranteeing the privacy of all $$m$$ samples should make the estimation task more difficult. We obtain tight bounds for this problem under almost all parameter regimes. Perhaps surprisingly, we show that in suitable parameter regimes, having $$m$$ samples per user is equivalent to having $$m$$ times more users, each with only one sample. Our results demonstrate interesting phase transitions for $$m$$ and the privacy parameter $$\varepsilon$$ in the estimation risk. Finally, connecting with recent results on shuffled DP, we show that combined with random shuffling, our algorithm leads to optimal error guarantees (up to logarithmic factors) under the central model of user-level DP in certain parameter regimes. We provide several simulations to verify our theoretical findings. 
    more » « less