skip to main content


Title: Organic Piezoresistive Robotic Skin Sensor Fabrication, Integration and Characterization
Advanced applications for human-robot interaction require perception of physical touch in a manner that imitates the human tactile perception. Feedback generated from tactile sensor arrays can be used to control the interaction of a robot with their environment and other humans. In this paper, we present our efforts to fabricate piezoresistive organic polymer sensor arrays using PEDOT: PSS or poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate). Sensors are realized as strain-gauges on Kapton substrates with thermal and electrical response characteristics to human touch. In this paper, we detail fabrication processes associated with a Gold etching technique combined with a wet lift-off photolithographic process to implement a circular tree designed sensor microstructure in our cleanroom. The testing of this microstructure is done on a load testing apparatus facilitated by an integrated circuit design. Furthermore, a lamination process is employed to compensate for temperature drift while measuring pressure for double-sided sensor substrates. Experiments carried out to evaluate the performance of the fabricated structure, indicates 100% sensor yields with the updated technique implemented.  more » « less
Award ID(s):
1828355
NSF-PAR ID:
10310582
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
16th International Manufacturing Science and Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Enhancing physical human-robot interaction requires the improvement in the tactile perception of physical touch. Robot skin sensors exhibiting piezoresistive behavior can be used in conjunction with collaborative robots. In past work, fabrication of these tactile arrays was done using cleanroom techniques such as spin coating, photolithography, sputtering, wet and dry etching onto flexible polymers. In this paper, we present an addictive, non-cleanroom improved process of depositing PEDOT: PSS, which is the organic polymer responsible for the piezoresistive phenomenon of the robot skin sensor arrays. This publication details the patterning of the robot skin sensor structures and the adaptation of the inkjet printing technology to the fabrication process. This increases the possibility of scaling the production output while reducing the cleanroom fabrication cost and time from an approximately five-hour PEDOT: PSS deposition process to five minutes. Furthermore, the testing of these skin sensor arrays is carried out on a testing station equipped with a force plunger and an integrated circuit designed to provide perception feedback on various force load profiles controlled in an automated process. The results show uniform deposition of the PEDOT: PSS, consistent resistance measurement, and appropriate tactile response across an array of 16 sensors.

     
    more » « less
  2. null (Ed.)
    This paper proposes and evaluates the use of image classification for detailed, full-body human-robot tactile interaction. A camera positioned below a translucent robot skin captures shadows generated from human touch and infers social gestures from the captured images. This approach enables rich tactile interaction with robots without the need for the sensor arrays used in traditional social robot tactile skins. It also supports the use of touch interaction with non-rigid robots, achieves high-resolution sensing for robots with different sizes and shape of surfaces, and removes the requirement of direct contact with the robot. We demonstrate the idea with an inflatable robot and a standing-alone testing device, an algorithm for recognizing touch gestures from shadows that uses Densely Connected Convolutional Networks, and an algorithm for tracking positions of touch and hovering shadows. Our experiments show that the system can distinguish between six touch gestures under three lighting conditions with 87.5 - 96.0% accuracy, depending on the lighting, and can accurately track touch positions as well as infer motion activities in realistic interaction conditions. Additional applications for this method include interactive screens on inflatable robots and privacy-maintaining robots for the home. 
    more » « less
  3. Pressure sensitive robotic skins have long been investigated for applications to physical human-robot interaction (pHRI). Numerous challenges related to fabrication, sensitivity, density, and reliability remain to be addressed under various environmental and use conditions. In our previous studies, we designed novel strain gauge sensor structures for robotic skin arrays. We coated these star-shaped designs with an organic polymer piezoresistive material, Poly (3, 4-ethylenedioxythiophene)-ploy(styrenesulfonate) or PEDOT: PSS and integrated sensor arrays into elastomer robotic skins. In this paper, we describe a dry etching photolithographic method to create a stable uniform sensor layer of PEDOT:PSS onto star-shaped sensors and a lamination process for creating double-sided robotic skins that can be used with temperature compensation. An integrated circuit and load testing apparatus was designed for testing the resulting robotic skin pressure performance. Experiments were conducted to measure the loading performance of the resulting sensor prototypes and results indicate that over 80% sensor yields are possible with this fabrication process. 
    more » « less
  4. Tactile sensing is essential for robots to perceive and react to the environment. However, it remains a challenge to make large-scale and flexible tactile skins on robots. Industrial machine knitting provides solutions to manufacture customiz-able fabrics. Along with functional yarns, it can produce highly customizable circuits that can be made into tactile skins for robots. In this work, we present RobotSweater, a machine-knitted pressure-sensitive tactile skin that can be easily applied on robots. We design and fabricate a parameterized multi-layer tactile skin using off-the-shelf yarns, and characterize our sensor on both a flat testbed and a curved surface to show its robust contact detection, multi-contact localization, and pressure sensing capabilities. The sensor is fabricated using a well-established textile manufacturing process with a programmable industrial knitting machine, which makes it highly customizable and low-cost. The textile nature of the sensor also makes it easily fit curved surfaces of different robots and have a friendly appearance. Using our tactile skins, we conduct closed-loop control with tactile feedback for two applications: (1) human lead-through control of a robot arm, and (2) human-robot interaction with a mobile robot. 
    more » « less
  5. The most common sensing modalities found in a robot perception system are vision and touch, which together can provide global and highly localized data for manipulation. However, these sensing modalities often fail to adequately capture the behavior of target objects during the critical moments as they transition out of static, controlled contact with an end-effector to dynamic and uncontrolled motion. In this work, we present a novel multimodal visuotactile sensor that provides simultaneous visuotactile and proximity depth data. The sensor integrates an RGB camera and air pressure sensor to sense touch with an infrared time-of-flight (ToF) camera to sense proximity by leveraging a selectively transmissive soft membrane to enable the dual sensing modalities. We present the mechanical design, fabrication techniques, algorithm implementations, and evaluation of the sensor's tactile and proximity modalities. The sensor is demonstrated in three open-loop robotic tasks: approaching and contacting an object, catching, and throwing. The fusion of tactile and proximity data could be used to capture key information about a target object's transition behavior for sensor-based control in dynamic manipulation. 
    more » « less