skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intense Pulse Light Annealing for Perovskite Photovoltaics
Rapid advancements within photovoltaics realm necessitates swift fabrication of the modules using cheap materials through cost effective manufacturing processes to achieve short cost payback time. Photovoltaics manufacturing includes chemical processing of the materials followed by thermal annealing. Yet, long-term annealing of the materials using high temperature furnaces have remained the prevalent post-processing approach in industry which necessitates alternative methods to achieve high performance modules through rapid and economical processes. Intense pulse light (IPL) has been successfully applied as a promising rapid post-process annealing for various thin film photovoltaics, particularly to process the organic-inorganic perovskite solar cell (PSC) layers. In this paper, several results pertinent to the application of IPL on perovskite and SnO2 electron transport thin films are presented and the role of IPL on rapid thermal annealing (RTA) is explained. We show that swift fabrication of PSCs through IPL can result in efficiencies exceeding 16% when the Perovskite film is annealed with aid of CH2I2 alkyl halide additive in the ambient with 60% relative humidity. In addition, the synergy of IPL-alkyl halide interaction for other perovskite chemistries is introduced. We show that achieving to PSCs exceeding 12% efficiency was possible when the perovskite and SnO2 ETL was annealed sequentially through IPL.  more » « less
Award ID(s):
1828355
PAR ID:
10310617
Author(s) / Creator(s):
;
Date Published:
Journal Name:
15th International Manufacturing Science and Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The organic metal halide perovskite material is capable of high throughput manufacturing via traditional deposition processes used in roll-to-roll, yet thermal annealing post deposition may require long ovens. We report rapid annealed perovskite thin films using intense pulsed light (IPL) to initiate a radiative thermal response that is enabled by an alkyl halide additive that collectively improves the performance of a device processed in an ambient environment from a baseline of 10 to 16.5% efficiency. Previous reports on CH 3 NH 3 PbI 3 perovskite films using IPL processing achieved functional devices in milli-second time scales and are promising for high throughput manufacturing processes under ambient conditions. In this study, we found that the addition of diiodomethane (CH 2 I 2 ) as an additive to the methylammonium iodide (MAI)/lead iodide (PbI 2 ) precursor ink chemistry and subsequent IPL thermal annealing are inter-dependent. The concentration of CH 2 I 2 and IPL processing parameters have a direct effect on the surface morphology of the films and performance within a perovskite solar cell (PSC). The CH 2 I 2 dissociates under exposure to ultraviolet (UV) radiation from the IPL source liberating iodine ions in the film, influencing the perovskite formation and reducing the defect states. We anticipate that these results can be utilized to further develop different ink formulations using alkyl halides for the IPL technique to improve the performance of perovskite solar cells processed in ambient conditions. 
    more » « less
  2. Rapid chemistry and processing development has increased the performance of perovskite solar cells (PSCs) in an unprecedented manner, yet postdeposition annealing impedes high‐throughput manufacturing. Herein, SnO2and carbon charge transport films are fabricated entirely through an integrated robotic setup utilizing inkjet printing and intense pulse light (IPL) as a high‐speed postprocess annealing method; hence, process optimization is crucial for successful fabrication of PSCs. This work investigates the role of inkjet deposition parameters as well as IPL annealing on the morphology and uniformity of films with aid of spectroscopy and spectrophotometry. Initially PSCs exceeding 13% efficiency are developed by only fabricating the SnO2film through the robotic setup, but spin coating all other films followed by IPL annealing to demonstrate successful fabrication of SnO2layer. Finally, SnO2and carbon back contact films are entirely fabricated through the integrated robotic setup in a high humid ambient environment (>60%), resulting in PSCs exceeding 5% efficiency. Unlike successful direct annealing of SnO2wet films, IPL annealing of wet carbon severely damaged the phase and morphology necessitating rapid solvent removal before IPL annealing. This work establishes pioneering steps towards utilizing IPL in an entirely automated fabrication line, allowing for scalable fabrication of PSCs through non‐roll‐to‐roll. 
    more » « less
  3. Abstract Surface passivation of perovskite solar cells (PSCs) using a low‐cost industrial organic pigment quinacridone (QA) is presented. The procedure involves solution processing a soluble derivative of QA,N,N‐bis(tert‐butyloxycarbonyl)‐quinacridone (TBOC‐QA), followed by thermal annealing to convert TBOC‐QA into insoluble QA. With halide perovskite thin films coated by QA, PSCs based on methylammonium lead iodide (MAPbI3) showed significantly improved performance with remarkable stability. A PCE of 21.1 % was achieved, which is much higher than 18.9 % recorded for the unmodified devices. The QA coating with exceptional insolubility and hydrophobicity also led to greatly enhanced contact angle from 35.6° for the pristine MAPbI3thin films to 77.2° for QA coated MAPbI3thin films. The stability of QA passivated MAPbI3perovskite thin films and PSCs were significantly enhanced, retaining about 90 % of the initial efficiencies after more than 1000 hours storage under ambient conditions. 
    more » « less
  4. Abstract Halide perovskite solar cells (PSCs) are a state-of-the-art photovoltaic technology that exhibit high efficiencies and can be manufactured using roll-to-roll systems. However, PSCs are currently fabricated using sequential layer-by-layer deposition, which constrains the selection of suitable functional layers in the solar cell and limits the processing conditions and techniques that can be used. Lamination via diffusion bonding is a scalable parallel-processing technique that has the capability to overcome some of the challenges of sequential deposition by widening the thermal processing window and reducing the chemical compatibility requirements for PSC manufacturing. However, there remains a lack of detailed understanding of the process-structure-property relationships needed to accelerate the development of high-volume lamination-based manufacturing processes. In this work, we introduce a method to study the process-structure-property relationships of laminated perovskite semiconductors by using a custom photoluminescence (PL) spectroscopy system to quantify spatial heterogeneity in laminated halide perovskite (HP) materials. PL is an important figure-of-merit used to quantify the optoelectronic properties of semiconductor materials used in PV manufacturing. The spatial variation in PL of a laminated HP film is compared to that of an unlaminated HP film. The PL system uses servomotors and an Arduino microcontroller to automate a PL mapping procedure. The PL equipment is tunable to achieve a minimum possible spot size of ∼50 μm, enabling high-resolution measurements. The system is used to measure the PL of 19 separate locations on both a laminated and unlaminated HP material. The results of this study reveal that lamination at optimal conditions will improve the average PL peak intensity of the HP by 55%, indicating that lamination has the potential to improve the optoelectronic characteristics of PSCs. However, lamination also increases the standard deviation of PL peak intensity. Therefore, although lamination improves the PL of HPs, it also induces unwanted spatial heterogeneity. This warrants future studies on the governing physical mechanisms that determine quality control metrics in lamination-based PSC manufacturing. 
    more » « less
  5. SnO2 is a prototypical transparent conducting oxide that finds widespread applications as transparent electrodes, gas sensors, and transparent thin-film devices. Hydrogen impurities in SnO2 give rise to unintentional n-type behavior and unexpected changes to conductivity. Interstitial H (Hi) and H at an oxygen vacancy (HO) are both shallow donors in SnO2. An O–H vibrational line at 3155 cm−1, that can be produced by a thermal anneal at 500 °C followed by a rapid quench, has been assigned to the Hi center and is unstable at room temperature on a timescale of weeks. An IR absorption study of the decay kinetics of the 3155 cm−1 O–H line has been performed. The disappearance of Hi upon annealing has been found to follow second-order kinetics. Measurements of the decay rate for a range of temperatures have determined an activation energy for the diffusion of interstitial H in SnO2. These results provide fundamental information about how unintentional hydrogen impurities and their reactions can change the conductivity of SnO2 device materials in processes as simple as thermal annealing in an inert ambient. 
    more » « less