The development of halide perovskite (HP) based thin film solar cells has been unprecedented in the past few years, and there is significant ongoing effort aiming to make perovskite solar cells (PSCs) more efficient and stable. Parallel to the PSC research, there is growing interest in exploring the synthesis and physiochemical behaviors of HP nanocrystals (NCs). While these HP NCs inherently possess many unique properties that are suitable for the use in PSCs, the reported effort of incorporating HP NCs into PSCs is still highly limited. As a result, there is a gap between HP NC and PSC research. In this context, we provide here a brief review of the established HP NC synthesis and a discussion of the several recent studies pertaining to the use of HP NCs in PSCs. Based on these, we provide perspectives on promising directions for bridging the gap between HP NC and PSC research in the future.
more »
« less
Brief Paper: Quantifying Spatial Heterogeneity of Laminated Perovskite Semiconductors Using Photoluminescence Mapping
Abstract Halide perovskite solar cells (PSCs) are a state-of-the-art photovoltaic technology that exhibit high efficiencies and can be manufactured using roll-to-roll systems. However, PSCs are currently fabricated using sequential layer-by-layer deposition, which constrains the selection of suitable functional layers in the solar cell and limits the processing conditions and techniques that can be used. Lamination via diffusion bonding is a scalable parallel-processing technique that has the capability to overcome some of the challenges of sequential deposition by widening the thermal processing window and reducing the chemical compatibility requirements for PSC manufacturing. However, there remains a lack of detailed understanding of the process-structure-property relationships needed to accelerate the development of high-volume lamination-based manufacturing processes. In this work, we introduce a method to study the process-structure-property relationships of laminated perovskite semiconductors by using a custom photoluminescence (PL) spectroscopy system to quantify spatial heterogeneity in laminated halide perovskite (HP) materials. PL is an important figure-of-merit used to quantify the optoelectronic properties of semiconductor materials used in PV manufacturing. The spatial variation in PL of a laminated HP film is compared to that of an unlaminated HP film. The PL system uses servomotors and an Arduino microcontroller to automate a PL mapping procedure. The PL equipment is tunable to achieve a minimum possible spot size of ∼50 μm, enabling high-resolution measurements. The system is used to measure the PL of 19 separate locations on both a laminated and unlaminated HP material. The results of this study reveal that lamination at optimal conditions will improve the average PL peak intensity of the HP by 55%, indicating that lamination has the potential to improve the optoelectronic characteristics of PSCs. However, lamination also increases the standard deviation of PL peak intensity. Therefore, although lamination improves the PL of HPs, it also induces unwanted spatial heterogeneity. This warrants future studies on the governing physical mechanisms that determine quality control metrics in lamination-based PSC manufacturing.
more »
« less
- Award ID(s):
- 2328010
- PAR ID:
- 10537197
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8811-7
- Format(s):
- Medium: X
- Location:
- Knoxville, Tennessee, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The organic metal halide perovskite material is capable of high throughput manufacturing via traditional deposition processes used in roll-to-roll, yet thermal annealing post deposition may require long ovens. We report rapid annealed perovskite thin films using intense pulsed light (IPL) to initiate a radiative thermal response that is enabled by an alkyl halide additive that collectively improves the performance of a device processed in an ambient environment from a baseline of 10 to 16.5% efficiency. Previous reports on CH 3 NH 3 PbI 3 perovskite films using IPL processing achieved functional devices in milli-second time scales and are promising for high throughput manufacturing processes under ambient conditions. In this study, we found that the addition of diiodomethane (CH 2 I 2 ) as an additive to the methylammonium iodide (MAI)/lead iodide (PbI 2 ) precursor ink chemistry and subsequent IPL thermal annealing are inter-dependent. The concentration of CH 2 I 2 and IPL processing parameters have a direct effect on the surface morphology of the films and performance within a perovskite solar cell (PSC). The CH 2 I 2 dissociates under exposure to ultraviolet (UV) radiation from the IPL source liberating iodine ions in the film, influencing the perovskite formation and reducing the defect states. We anticipate that these results can be utilized to further develop different ink formulations using alkyl halides for the IPL technique to improve the performance of perovskite solar cells processed in ambient conditions.more » « less
-
Indium tin oxide (ITO) coated Willow glass is an excellent substrate for roll-to-roll manufacturing of perovskite solar cells (PSCs) but can have large variability in its optical and electrical properties. Photonic curing uses intense light pulses instead of heat to process materials and has the potential to facilitate faster processing speeds in roll-to-roll manufacturing to upscale the production of PSCs. The substrate materials’ properties play an integral role in the photonic curing outcome. Here, we present the effect of ITO transmission on the photonic curing of NiO sol-gel precursors into metal oxide and consequently the PSC performance.more » « less
-
Rapid advancements within photovoltaics realm necessitates swift fabrication of the modules using cheap materials through cost effective manufacturing processes to achieve short cost payback time. Photovoltaics manufacturing includes chemical processing of the materials followed by thermal annealing. Yet, long-term annealing of the materials using high temperature furnaces have remained the prevalent post-processing approach in industry which necessitates alternative methods to achieve high performance modules through rapid and economical processes. Intense pulse light (IPL) has been successfully applied as a promising rapid post-process annealing for various thin film photovoltaics, particularly to process the organic-inorganic perovskite solar cell (PSC) layers. In this paper, several results pertinent to the application of IPL on perovskite and SnO2 electron transport thin films are presented and the role of IPL on rapid thermal annealing (RTA) is explained. We show that swift fabrication of PSCs through IPL can result in efficiencies exceeding 16% when the Perovskite film is annealed with aid of CH2I2 alkyl halide additive in the ambient with 60% relative humidity. In addition, the synergy of IPL-alkyl halide interaction for other perovskite chemistries is introduced. We show that achieving to PSCs exceeding 12% efficiency was possible when the perovskite and SnO2 ETL was annealed sequentially through IPL.more » « less
-
Photonic curing (PC) can facilitate high-speed perovskite solar cell (PSC) manufacturing because it uses high-intensity light pulses to crystallize perovskite films in milliseconds. However, optimizing PC conditions is challenging due to its many variables, and using power conversion efficiency (PCE) as the optimization metric is both time-consuming and labor-intensive. This work presents a machine learning (ML) approach to optimize PC conditions for fabricating methylammonium lead iodide (MAPbI3) films by quantitatively comparing their ultraviolet-visible (UV-vis) absorbance spectra to thermal annealed (TA) films using four similarity metrics. We perform Bayesian optimization coupled with Gaussian process regression (BO-GP) to minimize the similarity metrics. Refining PC conditions using active learning based on BO-GP models, we achieve a PC MAPbI3 film with an absorbance spectrum closely matching a TA reference film, which is further verified by its crystalline and morphological properties. Thus, we demonstrate that the UV-vis absorption spectrum can accurately proxy film quality. Additionally, we use an AI-based segmentation model for a more efficient grain size analysis. However, when we use the optimized PC condition to fabricate PSCs, we find that interaction between MAPbI3 and the hole transport layer (HTL) during PC critically degrades the PSC performance. By adding a buffer layer between the HTL and MAPbI3, the optimized PC PSCs produce a champion PCE of 11.8%, comparable to the TA reference of 11.7%. Using UV-vis similarity metrics instead of device PCE as the objective in our BO-GP method accelerates the optimization of PC processing conditions for MAPbI3 films.more » « less
An official website of the United States government

