- Award ID(s):
- 2010768
- Publication Date:
- NSF-PAR ID:
- 10310733
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 61
- Issue:
- 3
- ISSN:
- 1540-7063
- Sponsoring Org:
- National Science Foundation
More Like this
-
Glucocorticoid-Mediated Changes in Male Green Treefrog Vocalizations Alter Attractiveness to FemalesSynopsis Adrenal glucocorticoids (GCs) are increasingly recognized as important modulators of male courtship signals, suggesting that circulating levels of these steroids can play a central role in sexual selection. However, few studies have examined whether GC-mediated effects on male sexual signals actually impact mate choice by females. Here, we examine how corticosterone (CORT)-mediated changes in the vocalizations of male green treefrogs, Dryophytes cinereus, influence attractiveness to females. In this species, agonistic acoustic signaling between rival males competing for mates increases circulating CORT levels in contest losers. Acute elevations in CORT, in turn, decrease the duration of male advertisement calls and increase the latency between successive calls, resulting in a net reduction in vocal effort (the amount of signaling per unit time) that occurs independently of changes in circulating androgens. Based on known preferences for acoustic features in D. cinereus, and other anuran species, the direction of CORT-mediated effects on temporal call characteristics is expected to compromise attractiveness to females, but whether they are of sufficient magnitude to impact female mate choice decisions is unclear. To examine whether CORT-mediated effects on male advertisement calls reduce attractiveness to females, we broadcast vocalizations in dual speaker playback experiments approximating the mean and 1more »
-
Abstract Males of many species aggregate in large groups where they signal to attract females. These large aggregations create intense competition for mates, and the simultaneous signaling by many individuals can impair any given male’s ability to attract females. In response to this situation, male signals can be modified, either evolutionarily or facultatively, such that the detectability of the signal is enhanced. The way in which signals are modified varies among even closely related species, yet few studies have evaluated what causes such variation. Here, we address this issue using male spadefoot toads (Spea multiplicata and Spea bombifrons), which call to attract females. Using data from natural populations, we examined if, and how, male calls of 3 different call types (S. multiplicata with a slow call, S. bombifrons with a slow call, and S. bombifrons with a fast call) varied depending on competition with other males. We found that in both call types consisting of slow calls, call pulse rate decreased with increasing competition. By contrast, in the call type consisting of fast calls, call rate decreased with increasing competition. Moreover, we found that the relationship between competition and male call effort—a measure of the energy that males expend inmore »
-
Noise is a common problem in animal communication. We know little, however, about how animals communicate in noise using multimodal signals. Multimodal signals are hypothesized to be favoured by evolution because they increase the efficacy of detection/discrimination in noisy environments. We tested the hypothesis that female túngara frogs’ responses to attractive male advertisement calls are improved in noise when a visual signal component is added to the available choices. We tested this at two levels of decision complexity (two and three choices). In a two-choice test, the presence of noise did not reduce female preferences for attractive calls. The visual component of a calling male, associated with an unattractive call, also did not reduce preference for attractive calls in the absence of noise. In the presence of noise, however, females were more likely to choose an unattractive call coupled with the visual component. In three-choice tests, the presence of noise alone reduced female responses to attractive calls and this was not strongly affected by the presence or absence of visual components. The responses in these experiments fail to support the multimodal signal efficacy hypothesis. Instead, the data suggest that audio-visual perception and cognitive processing, related to mate choice decisions, aremore »
-
The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize “singing” males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms −2 ) that are 7–10 dB lower than nonreproductive females across a broad range of frequencies,more »
-
In coastal waters, anthropogenic activity and its associated sound have been shown to negatively impact aquatic taxa that rely on sound signaling and reception for navigation, prey location, and intraspecific communication. The oyster toadfish Opsanus tau depends on acoustic communication for reproductive success, as males produce ‘boatwhistle’ calls to attract females to their nesting sites. However, it is unknown if in situ vessel sound impacts intraspecific communication in this species. Passive acoustic monitoring using a 4-hydrophone linear array was conducted in Eel Pond, a small harbor in Woods Hole, MA, USA, to monitor the calling behavior of male toadfish. The number of calls pre- and post-exposure to vessel sound was compared. Individual toadfish were localized, and their approximate sound level exposure was predicted using sound mapping. Following exposure to vessel sound, the number of calls significantly decreased compared to the number of calls pre-exposure, with vessel sound overlapping the frequency range of male toadfish boatwhistles. This study provides support that anthropogenic sound can negatively affect intraspecific communication and suggests that in situ vessel sound has the ability to mask boatwhistles and change the calling behavior of male toadfish. Masking could lead to a reduction in intraspecific communication and lower reproductivemore »