skip to main content


Search for: All records

Award ID contains: 2010768

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Investigating how animals navigate space and time is key to understanding communication. Small differences in spatial positioning or timing can mean the difference between a message received and a missed connection. However, these spatio-temporal dynamics are often overlooked or are subject to simplifying assumptions in investigations of animal signaling. This special issue addresses this significant knowledge gap by integrating work from researchers with disciplinary backgrounds in neuroscience, cognitive ecology, sensory ecology, computer science, evolutionary biology, animal behavior, and philosophy. This introduction to the special issue outlines the novel questions and approaches that will advance our understanding of spatio-temporal dynamics of animal communication. We highlight papers that consider the evolution of spatio-temporal dynamics of behavior across sensory modalities and social contexts. We summarize contributions that address the neural and physiological mechanisms in senders and receivers that shape communication. We then turn to papers that introduce cutting edge technologies that will revolutionize our ability to track spatio-temporal dynamics of individuals during social encounters. The interdisciplinary collaborations that gave rise to these papers emerged in part from a novel workshop-symposium model, which we briefly summarize for those interested in fostering syntheses across disciplines. 
    more » « less
  2. Abstract Researchers have long examined the structure of animal advertisement signals, but comparatively little is known about how often these signals are repeated and what factors predict variation in signaling rate across species. Here, we focus on acoustic advertisement signals to test the hypothesis that calling males experience a tradeoff between investment in the duration or complexity of individual calls and investment in signaling over long time periods. This hypothesis predicts that the number of signals that a male produces per 24 h will negatively correlate with (1) the duration of sound that is produced in each call (the sum of all pulses) and (2) the number of sound pulses per call. To test this hypothesis, we measured call parameters and the number of calls produced per 24 h in 16 species of sympatric phaneropterine katydids from the Panamanian rainforest. This assemblage also provided us with the opportunity to test a second taxonomically specific hypothesis about signaling rates in taxa such as phaneropterine katydids that transition from advertisement calls to mating duets to facilitate mate localization. To establish duets, male phaneropterine katydids call and females produce a short acoustic reply. These duets facilitate searching by males, females, or both sexes, depending on the species. We test the hypothesis that males invest either in calling or in searching for females. This hypothesis predicts a negative relationship between how often males signal over 24 h and how much males move across the landscape relative to females. For the first hypothesis, there was a strong negative relationship between the number of signals and the duration of sound that is produced in each signal, but we find no relationship between the number of signals produced per 24 h and the number of pulses per signal. This result suggests the presence of cross-taxa tradeoffs that limit signal production and duration, but not the structure of individual signals. These tradeoffs could be driven by energetic limitations, predation pressure, signal efficacy, or other signaling costs. For the second hypothesis, we find a negative relationship between the number of signals produced per day and proportion of the light trap catch that is male, likely reflecting males investing either in calling or in searching. These cross-taxa relationships point to the presence of pervasive trade-offs that fundamentally shape the spatial and temporal dynamics of communication. 
    more » « less
  3. Synopsis Digital photography and videography provide rich data for the study of animal behavior and are consequently widely used techniques. For fixed, unmoving cameras there is a resolution versus field-of-view tradeoff and motion blur smears the subject on the sensor during exposure. While these fundamental tradeoffs with stationary cameras can be sidestepped by employing multiple cameras and providing additional illumination, this may not always be desirable. An alternative that overcomes these issues of stationary cameras is to direct a high-magnification camera at an animal continually as it moves. Here, we review systems in which automatic tracking is used to maintain an animal in the working volume of a moving optical path. Such methods provide an opportunity to escape the tradeoff between resolution and field of view and also to reduce motion blur while still enabling automated image acquisition. We argue that further development will be useful and outline potential innovations that may improve the technology and lead to more widespread use. 
    more » « less
  4. null (Ed.)
    Synopsis Internal state profoundly alters perception and behavior. For example, a starved fly may approach and consume foods that it would otherwise find undesirable. A socially engaged newt may remain engaged in the presence of a predator, whereas a solitary newt would otherwise attempt to escape. Yet, the definition of internal state is fluid and ill-defined. As an interdisciplinary group of scholars spanning five career stages (from undergraduate to full professor) and six academic institutions, we came together in an attempt to provide an operational definition of internal state that could be useful in understanding the behavior and the function of nervous systems, at timescales relevant to the individual. In this perspective, we propose to define internal state through an integrative framework centered on dynamic and interconnected communication loops within and between the body and the brain. This framework is informed by a synthesis of historical and contemporary paradigms used by neurobiologists, ethologists, physiologists, and endocrinologists. We view internal state as composed of both spatially distributed networks (body–brain communication loops), and temporally distributed mechanisms that weave together neural circuits, physiology, and behavior. Given the wide spatial and temporal scales at which internal state operates—and therefore the broad range of scales at which it could be defined—we choose to anchor our definition in the body. Here we focus on studies that highlight body-to-brain signaling; body represented in endocrine signaling, and brain represented in sensory signaling. This integrative framework of internal state potentially unites the disparate paradigms often used by scientists grappling with body–brain interactions. We invite others to join us as we examine approaches and question assumptions to study the underlying mechanisms and temporal dynamics of internal state. 
    more » « less
  5. Synopsis Identifying individual animals is crucial for many biological investigations. In response to some of the limitations of current identification methods, new automated computer vision approaches have emerged with strong performance. Here, we review current advances of computer vision identification techniques to provide both computer scientists and biologists with an overview of the available tools and discuss their applications. We conclude by offering recommendations for starting an animal identification project, illustrate current limitations, and propose how they might be addressed in the future. 
    more » « less
  6. Synopsis Across the animal kingdom, the ability to produce communication signals appropriate to social encounters is essential, but how these behaviors are selected and adjusted in a context-dependent manner are poorly understood. This question can be addressed on many levels, including sensory processing by peripheral organs and the central nervous system, sensorimotor integration in decision-making brain regions, and motor circuit activation and modulation. Because neuromodulator systems act at each of these levels, they are a useful lens through which to explore the mechanisms underlying complex patterns of communication. It has been clear for decades that understanding the logic of input–output decision making by the nervous system requires far more than simply identifying the connections linking sensory organs to motor circuits; this is due in part to the fact that neuromodulators can promote distinct and temporally dynamic responses to similar signals. We focus on the vocal circuit dynamics of Xenopus frogs, and describe complementary examples from diverse vertebrate communication systems. While much remains to be discovered about how neuromodulators direct flexibility in communication behaviors, these examples illustrate that several neuromodulators can act upon the same circuit at multiple levels of control, and that the functional consequence of neuromodulation can depend on species-specific factors as well as dynamic organismal characteristics like internal state. 
    more » « less
  7. null (Ed.)
    Synopsis Animal communication is inherently spatial. Both signal transmission and signal reception have spatial biases—involving direction, distance, and position—that interact to determine signaling efficacy. Signals, be they visual, acoustic, or chemical, are often highly directional. Likewise, receivers may only be able to detect signals if they arrive from certain directions. Alignment between these directional biases is therefore critical for effective communication, with even slight misalignments disrupting perception of signaled information. In addition, signals often degrade as they travel from signaler to receiver, and environmental conditions that impact transmission can vary over even small spatiotemporal scales. Thus, how animals position themselves during communication is likely to be under strong selection. Despite this, our knowledge regarding the spatial arrangements of signalers and receivers during communication remains surprisingly coarse for most systems. We know even less about how signaler and receiver behaviors contribute to effective signaling alignment over time, or how signals themselves may have evolved to influence and/or respond to these aspects of animal communication. Here, we first describe why researchers should adopt a more explicitly geometric view of animal signaling, including issues of location, direction, and distance. We then describe how environmental and social influences introduce further complexities to the geometry of signaling. We discuss how multimodality offers new challenges and opportunities for signalers and receivers. We conclude with recommendations and future directions made visible by attention to the geometry of signaling. 
    more » « less
  8. Synopsis The term “cognitive template” originated from work in human-based cognitive science to describe a literal, stored, neural representation used in recognition tasks. As the study of cognition has expanded to nonhuman animals, the term has diffused to describe a wider range of animal cognitive tools and strategies that guide action through the recognition of and discrimination between external states. One potential reason for this nonstandardized meaning and variable employment is that researchers interested in the broad range of animal recognition tasks enjoy the simplicity of the cognitive template concept and have allowed it to become shorthand for many dissimilar or unknown neural processes without deep scrutiny of how this metaphor might comport with underlying neurophysiology. We review the functional evidence for cognitive templates in fields such as perception, navigation, communication, and learning, highlighting any neural correlates identified by these studies. We find that the concept of cognitive templates has facilitated valuable exploration at the interface between animal behavior and cognition, but the quest for a literal template has failed to attain mechanistic support at the level of neurophysiology. This may be the result of a misled search for a single physical locus for the “template” itself. We argue that recognition and discrimination processes are best treated as emergent and, as such, may not be physically localized within single structures of the brain. Rather, current evidence suggests that such tasks are accomplished through synergies between multiple distributed processes in animal nervous systems. We thus advocate for researchers to move toward a more ecological, process-oriented conception, especially when discussing the neural underpinnings of recognition-based cognitive tasks. 
    more » « less
  9. Synopsis Locomotion is a hallmark of organisms which has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard; therefore, sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs, and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify that summation (e.g., gating) and weighting—which are inherent computations of spiking neurons—underlie multimodal integration across spatial and temporal scales, therefore suggesting collective strategies to guide locomotion. 
    more » « less
  10. Synopsis Communication is a social process and usually occurs in a network of signalers and receivers. While social network analysis has received enormous recent attention from animal behaviorists, there have been relatively few attempts to apply these techniques to communication networks. Communication networks have the potential to offer novel insights into social network studies, and yet are especially challenging subjects, largely because of their unique spatiotemporal characteristics. Namely, signals propagate through the environment, often dissociating from the body of the signaler, to influence receiver behavior. The speed of signal propagation and the signal’s active space will affect the congruence of communication networks and other types of social network; in extreme cases, the signal may persist and only first be detected long after the signaler has left the area. Other signals move more rapidly and over greater distances than the signaler could possibly move to reach receivers. We discuss the spatial and temporal consequences of signaling in networks and highlight the distinction between the physical location of the signaler and the spread of influence of its signals, the effects of signal modality and receiver sensitivity on communication network properties, the potential for feedbacks between network layers, and approaches to analyzing spatial and temporal change in communication networks in conjunction with other network layers. 
    more » « less