skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hyperchromatic structural color for perceptually enhanced sensing by the naked eye
Colorimetric sensors offer the prospect for on-demand sensing diagnostics in simple and low-cost form factors, enabling rapid spatiotemporal inspection by digital cameras or the naked eye. However, realizing strong dynamic color variations in response to small changes in sample properties has remained a considerable challenge, which is often pursued through the use of highly responsive materials under broadband illumination. In this work, we demonstrate a general colorimetric sensing technique that overcomes the performance limitations of existing chromatic and luminance-based sensing techniques. Our approach combines structural color optical filters as sensing elements alongside a multichromatic laser illuminant. We experimentally demonstrate our approach in the context of label-free biosensing and achieve ultrasensitive and perceptually enhanced chromatic color changes in response to refractive index changes and small molecule surface attachment. Using structurally enabled chromaticity variations, the human eye is able to resolve ∼0.1-nm spectral shifts with low-quality factor (e.g., Q ∼ 15) structural filters. This enables spatially resolved biosensing in large area (approximately centimeters squared) lithography-free sensing films with a naked eye limit of detection of ∼3 pg/mm 2 , lower than industry standard sensors based on surface plasmon resonance that require spectral or angular interrogation. This work highlights the key roles played by both the choice of illuminant and design of structural color filter, and it offers a promising pathway for colorimetric devices to meet the strong demand for high-performance, rapid, and portable (or point-of-care) diagnostic sensors in applications spanning from biomedicine to environmental/structural monitoring.  more » « less
Award ID(s):
1825787
PAR ID:
10310738
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
48
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamic and responsive structural color devices present promising opportunities for sensing and display technologies, with applications including point‐of‐care diagnostics, portable/wearable sensors, and low‐power full‐color displays. However, it is often difficult to generate a large and quantitatively meaningful colorimetric response especially toward weak stimuli. Here, dual‐band hyperchromatic structural color (HSC) is presented as an approach to overcome these challenges. Within this framework, a dual‐band mesoporous silicon rugate filter metamaterial co‐designed is experimentally realized for use with a dichromatic (red/green) illuminant. This is shown to enable an amplified red‐to‐green color transition with a substantially smaller wavelength shift than conventional structural color devices, Δλ ≪ |λG–λR|, as well as a direct quantitative mapping between the observed chromaticity and the input stimulus. This approach is experimentally demonstrated for the spatiotemporally resolved sensing of refractometric stimuli including small‐molecules and volatile organic compounds (VOCs) with a ≈0.08 nm equivalent spectral resolution. This approach is entirely scanning‐free, enabled by simple color imaging, and does not require advanced spectroscopic (hyperspectral) imaging or interferometric imaging to obtain meaningful quantitative and spatiotemporally resolved information pertaining to the sensor's attributes. These results demonstrate dual‐band HSC as a promising approach for realizing low‐cost and high performance dynamic structural color devices and sensors. 
    more » « less
  2. We report a novel colorimetric sensing paradigm using multi-chromatic light from an RGB laser combined with a structural color sensor for fast, ultra-sensitive, and spatio-temporally resolved detection of surface biomolecules by human eye or smartphone. 
    more » « less
  3. Abstract A novel surface modification approach is taken to cyanide‐sensing by using functionalized cellulose surface that is chemically modified by immobilizing cobalt(II)‐bis‐terpyridine complex on it. The cobalt(II)‐bis‐tpy complex can exhibit selective “naked eye” colorimetric detection of micromolar level cyanide in aqueous solution, where the visible red‐orange color of cobalt(II)‐bis‐tpy complex solution (aqueous) disappears in the presence of cyanide ions. In order to make the sensor more proficient and easy to use, these cobalt(II)‐bis‐tpy molecules are chemically grafted on the surface of microcrystalline cellulose and cellulose paper, which turns the color of functionalized cellulose orange‐red. Both of these colored cellulose powder and paper exhibit color loss in 10−6maqueous solution of potassium cyanide. This functionalized hybrid inorganic–organic paper offers an easy “dip and detect” cyanide sensing. 
    more » « less
  4. null (Ed.)
    A tetralactam macrocycle acts as a novel supramolecular adjuvant to capture a released resorufin dye and create a higher contrasting yellow/blue color change for enhanced naked eye interpretation of a colorimetric indicator assay. 
    more » « less
  5. Abstract Implantable image sensors have the potential to revolutionize neuroscience. Due to their small form factor requirements; however, conventional filters and optics cannot be implemented. These limitations obstruct high-resolution imaging of large neural densities. Recent advances in angle-sensitive image sensors and single-photon avalanche diodes have provided a path toward ultrathin lens-less fluorescence imaging, enabling plenoptic sensing by extending sensing capabilities to include photon arrival time and incident angle, thereby providing the opportunity for separability of fluorescence point sources within the context of light-field microscopy (LFM). However, the addition of spectral sensitivity to angle-sensitive LFM reduces imager resolution because each wavelength requires a separate pixel subset. Here, we present a 1024-pixel, 50  µm thick implantable shank-based neural imager with color-filter-grating-based angle-sensitive pixels. This angular-spectral sensitive front end combines a metal–insulator–metal (MIM) Fabry–Perot color filter and diffractive optics to produce the measurement of orthogonal light-field information from two distinct colors within a single photodetector. The result is the ability to add independent color sensing to LFM while doubling the effective pixel density. The implantable imager combines angular-spectral and temporal information to demix and localize multispectral fluorescent targets. In this initial prototype, this is demonstrated with 45 μm diameter fluorescently labeled beads in scattering medium. Fluorescent lifetime imaging is exploited to further aid source separation, in addition to detecting pH through lifetime changes in fluorescent dyes. While these initial fluorescent targets are considerably brighter than fluorescently labeled neurons, further improvements will allow the application of these techniques to in-vivo multifluorescent structural and functional neural imaging. 
    more » « less