skip to main content


Title: DARPP‐32 distinguishes a subset of adult‐born neurons in zebra finch HVC
Abstract

Adult male zebra finches (Taeniopygia guttata) continually incorporate adult‐born neurons into HVC, a telencephalic brain region necessary for the production of learned song. These neurons express activity‐dependent immediate early genes (e.g.,zenkandc‐fos) following song production, suggesting that these neurons are active during song production. Half of these adult‐born HVC neurons (HVC NNs) can be backfilled from the robust nucleus of the arcopallium (RA) and are a part of the vocal motor pathway underlying learned song production, but the other half do not backfill from RA, and they remain to be characterized. Here, we used cell birth‐dating, retrograde tract tracing, and immunofluorescence to demonstrate that half of all HVC NNs express the phosphoprotein DARPP‐32, a protein associated with dopamine receptor expression. We also demonstrate that DARPP‐32+ HVC NNs are contacted by tyrosine hydroxylase immunoreactive fibers, suggesting that they receive catecholaminergic input, have transiently larger nuclei than DARPP‐32‐neg HVC NNs, and do not backfill from RA. Taken together, these findings help characterize a group of HVC NNs that have no apparent projections to RA and so far have eluded positive identification other than HVC NN status.

 
more » « less
Award ID(s):
1828327
NSF-PAR ID:
10362353
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Comparative Neurology
Volume:
530
Issue:
5
ISSN:
0021-9967
Page Range / eLocation ID:
p. 792-803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Songbirds learn vocalizations by hearing and practicing songs. As song develops, the tempo becomes faster and more precise. In the songbird brain, discrete nuclei form interconnected myelinated circuits that control song acquisition and production. The myelin sheath increases the speed of action potential propagation by insulating the axons of neurons and by reducing membrane capacitance. As the brain develops, myelin increases in density, but the time course of myelin development across discrete song nuclei has not been systematically studied in a quantitative fashion. We tested the hypothesis that myelination develops differentially across time and song nuclei. We examined myelin development in the brains of the zebra finch (Taeniopygia guttata) from chick at posthatch day (d) 8 to adult (up to 147 d) in five major song nuclei: HVC (proper name), robust nucleus of the arcopallium (RA), Area X, lateral magnocellular nucleus of the anterior nidopallium, and medial portion of the dorsolateral thalamic nucleus (DLM). All of these nuclei showed an increase in the density of myelination during development but at different rates and to different final degrees. Exponential curve fits revealed that DLM showed earlier myelination than other nuclei, and HVC showed the slowest myelination of song nuclei. Together, these data show differential maturation of myelination in different portions of the song system. Such differential maturation would be well placed to play a role in regulating the development of learned song.

     
    more » « less
  2. Abstract

    Adult female zebra finches (Taeniopygia guttata), which do not produce learned songs, have long been thought to possess only vestiges of the forebrain network that supports learned song in males. This view ostensibly explains why females do not sing—many of the neural populations and pathways that make up the male song control network appear rudimentary or even missing in females. For example, classic studies of vocal‐premotor cortex (HVC, acronym is name) in male zebra finches identified prominent efferent pathways from HVC to vocal‐motor cortex (RA, robust nucleus of the arcopallium) and from HVC to the avian basal ganglia (Area X). In females, by comparison, the efferent targets of HVC were thought to be only partially innervated by HVC axons (RA) or absent (Area X). Here, using a novel visually guided surgical approach to target tracer injections with precision, we mapped the extrinsic connectivity of the adult female HVC. We find that female HVC shows a mostly male‐typical pattern of afferent and efferent connectivity, including robust HVC innervation of RA and Area X. As noted by earlier investigators, we find large sex differences in the volume of many regions that control male singing (male > female). However, sex differences in volume were diminished in regions that convey ascending afferent input to HVC. Our findings do not support a vestigial interpretation of the song control network in females. Instead, our findings support the emerging view that the song control network may have an altogether different function in nonsinging females.

     
    more » « less
  3. Abstract

    Neural activity within the cortical premotor nucleus HVC (acronym is name) encodes the learned songs of adult male zebra finches (Taeniopygia guttata). HVC activity is driven and/or modulated by a group of five afferent nuclei (the Medial Magnocellular nucleus of the Anterior Nidopallium, MMAN; Nucleus Interface, NIf; nucleus Avalanche, Av; the Robust nucleus of the Arcopallium, RA; the Uvaeform nucleus, Uva). While earlier evidence suggested that HVC receives a uniformly distributed and nontopographic pattern of afferent input, recent evidence suggests this view is incorrect (Basista et al.,). Here, we used a double‐labeling strategy (varying both the distance between and the axial orientation of dual tracer injections into HVC) to reveal a massively parallel and in some cases topographic pattern of afferent input. Afferent neurons target only one rostral or caudal location within medial or lateral HVC, and each HVC location receives convergent input from each afferent nucleus in parallel. Quantifying the distributions of single‐labeled cells revealed an orthogonal topography in the organization of afferent input from MMAN and NIf, two cortical nuclei necessary for song learning. MMAN input is organized across the lateral‐medial axis whereas NIf input is organized across the rostral‐caudal axis. To the extent that HVC activity is influenced by afferent input during the learning, perception, or production of song, functional models of HVC activity may need revision to account for the parallel input architecture of HVC, along with the orthogonal input topography of MMAN and NIf.

     
    more » « less
  4. ABSTRACT

    Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine‐related measures change throughout development in song‐control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development.NtsandNtsr1mRNA expression was analyzed in song‐control regions of male zebra finches in four stages of the song learning process: pre‐subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph).Ntsexpression in LMAN during the subsong stage was lower compared to other time points.Ntsr1expression was highest in HVC, Area X, and RA during the pre‐subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receiveNts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggestNtsmay be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671–686, 2018

     
    more » « less
  5. Coordination of behavior for cooperative performances often relies on linkages mediated by sensory cues exchanged between participants. How neurophysiological responses to sensory information affect motor programs to coordinate behavior between individuals is not known. We investigated how plain-tailed wrens (Pheugopedius euophrys) use acoustic feedback to coordinate extraordinary duet performances in which females and males rapidly take turns singing. We made simultaneous neurophysiological recordings in a song control area “HVC” in pairs of singing wrens at a field site in Ecuador. HVC is a premotor area that integrates auditory feedback and is necessary for song production. We found that spiking activity of HVC neurons in each sex increased for production of its own syllables. In contrast, hearing sensory feedback produced by the bird’s partner decreased HVC activity during duet singing, potentially coordinating HVC premotor activity in each bird through inhibition. When birds sang alone, HVC neurons in females but not males were inhibited by hearing the partner bird. When birds were anesthetized with urethane, which antagonizes GABAergic (γ-aminobutyric acid) transmission, HVC neurons were excited rather than inhibited, suggesting a role for GABA in the coordination of duet singing. These data suggest that HVC integrates information across partners during duets and that rapid turn taking may be mediated, in part, by inhibition.

     
    more » « less