skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drosophila Retinal Patterning
The Drosophila eye is an outstanding model system for exploring fundamental mechanisms of growth and development. The adult eye is composed of a perfect hexagonal lattice of ∼750 unit eyes, or ommatidia, each containing precisely 20 well-characterized cells. The eye develops from the eye/antennal imaginal disc, a flattened epithelial sac. During larval and pupal development, cells in the disc grow and undergo compartmentalisation, cell cycle arrest, differentiation, directed movement, and apoptosis, all utilising gene networks and signalling pathways similar to those in vertebrates. The genetic accessibility of Drosophila, together with the precision of eye development, makes the fly retina an extremely useful system with which to investigate the roles of genes and signalling pathways in development.  more » « less
Award ID(s):
1828327
PAR ID:
10310792
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Encyclopedia of life sciences
Volume:
1
Issue:
4
ISSN:
1476-9506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nucleolar stress occurs when ribosome production or function declines. Nucleolar stress in stem cells or progenitor cells often leads to disease states called ribosomopathies. Drosophila offers a robust system to explore how nucleolar stress causes cell cycle arrest, apoptosis, or autophagy depending on the cell type. We provide an overview of nucleolar stress in Drosophila by depleting nucleolar phosphoprotein of 140 kDa (Nopp140), a ribosome biogenesis factor (RBF) in nucleoli and Cajal bodies (CBs). The depletion of Nopp140 in eye imaginal disc cells generates eye deformities reminiscent of craniofacial deformities associated with the Treacher Collins syndrome (TCS), a human ribosomopathy. We show the activation of c-Jun N-terminal Kinase (JNK) in Drosophila larvae homozygous for a Nopp140 gene deletion. JNK is known to induce the expression of the pro-apoptotic Hid protein and autophagy factors Atg1, Atg18.1, and Atg8a; thus, JNK is a central regulator in Drosophila nucleolar stress. Ribosome abundance declines upon Nopp140 loss, but unusual cytoplasmic granules accumulate that resemble Processing (P) bodies based on marker proteins, Decapping Protein 1 (DCP1) and Maternal expression at 31B (Me31B). Wild type brain neuroblasts (NBs) express copious amounts of endogenous coilin, but coilin levels decline upon nucleolar stress in most NB types relative to the Mushroom body (MB) NBs. MB NBs exhibit resilience against nucleolar stress as they maintain normal coilin, Deadpan, and EdU labeling levels. 
    more » « less
  2. Vision is among the oldest and arguably most important sensory modalities for animals to interact with their external environment. Although many different eye types exist within the animal kingdom, mounting evidence indicates that the genetic networks required for visual system formation and function are relatively well conserved between species. This raises the question as to how common developmental programs are modified in functionally different eye types. Here, we approached this issue through EyeVolve, an open-source PYTHON-based model that recapitulates eye development based on developmental principles originally identified in Drosophila melanogaster . Proof-of-principle experiments showed that this program’s animated timeline successfully simulates early eye tissue expansion, neurogenesis, and pigment cell formation, sequentially transitioning from a disorganized pool of progenitor cells to a highly organized lattice of photoreceptor clusters wrapped with support cells. Further, tweaking just five parameters (precursor pool size, founder cell distance and placement from edge, photoreceptor subtype number, and cell death decisions) predicted a multitude of visual system layouts, reminiscent of the varied eye types found in larval and adult arthropods. This suggests that there are universal underlying mechanisms that can explain much of the existing arthropod eye diversity. Thus, EyeVolve sheds light on common principles of eye development and provides a new computational system for generating specific testable predictions about how development gives rise to diverse visual systems from a commonly specified neuroepithelial ground plan. 
    more » « less
  3. Contemporary regenerative therapies have introduced stem-like cells to replace damaged neurons in the visual system by recapitulating critical processes of eye development. The collective migration of neural stem cells is fundamental to retinogenesis and has been exceptionally well-studied using the fruit fly model of Drosophila Melanogaster. However, the migratory behavior of its retinal neuroblasts (RNBs) has been surprisingly understudied, despite being critical to retinal development in this invertebrate model. The current project developed a new microfluidic system to examine the collective migration of RNBs extracted from the developing visual system of Drosophila as a model for the collective motile processes of replacement neural stem cells. The system scales with the microstructure of the Drosophila optic stalk, which is a pre-cursor to the optic nerve, to produce signaling fields spatially comparable to in vivo RNB stimuli. Experiments used the micro-optic stalk system, or μOS, to demonstrate the preferred sizing and directional migration of collective, motile RNB groups in response to changes in exogenous concentrations of fibroblast growth factor (FGF), which is a key factor in development. Our data highlight the importance of cell-to-cell contacts in enabling cell cohesion during collective RNB migration and point to the unexplored synergy of invertebrate cell study and microfluidic platforms to advance regenerative strategies. 
    more » « less
  4. ABSTRACT Mineral nutrients are essential for plant growth, development and crop yield. Under mineral deficient conditions, plants rely on a sophisticated network of signalling pathways to coordinate their molecular, physiological, and morphological responses. Recent research has shown that long‐distance signalling pathways play a pivotal role in maintaining mineral homeostasis and optimising growth. This review explores the intricate mechanisms of long‐distance signalling under mineral deficiencies, emphasising its importance as a communication network between roots and shoots. Through the vascular tissues, plants transport an array of signalling molecules, including phytohormones, small RNAs, proteins, small peptides, and mobile mRNAs, to mediate systemic responses. Vascular tissues, particularly companion cells, are critical hubs for sensing and relaying mineral deficiency signals, leading to rapid changes in mineral uptake and optimised root morphology. We highlight the roles of key signalling molecules in regulating mineral acquisition and stress adaptation. Advances in molecular tools, including TRAP‐Seq, heterografting, and single‐cell RNA sequencing, have recently unveiled novel aspects of long‐distance signalling and its regulatory components. These insights underscore the essential role of vascular‐mediated communication in enabling plants to navigate heterogeneous mineral distribution environments and suggest new avenues for improving crop resilience and mineral use efficiency. 
    more » « less
  5. Gastrulation is an essential process in the early embryonic development of all higher animals. During gastrulation, the three embryonic germ layers, the ectoderm, mesoderm and endoderm, form and move to their correct positions in the developing embryo. This process requires the integration of cell division, differentiation and movement of thousands of cells. These cell behaviours are coordinated through shortand long-range signalling and must involve feedback to execute gastrulation in a reproducible and robust manner. Mechanosensitive signalling pathways and processes are being uncovered, revealing that shortand long-range mechanical stresses integrate cell behaviours at the tissue and organism scale. Because the interactions between cell behaviours, signalling and feedback are complex, combining experimental and modelling approaches is necessary to elucidate the regulatory mechanisms that drive development. We highlight how recent experimental and theoretical studies provided key insights into mechanical feedback that coordinates relevant cell behaviours at the organism scale during gastrulation. We outline advances in modelling the mechanochemical processes controlling primitive streak formation in the early avian embryo and discuss future developments. 
    more » « less