skip to main content


Title: HyperGI: Automated Detection and Repair of Information Flow Leakage
Maintaining confidential information control in software is a persistent security problem where failure means secrets can be revealed via program behaviors. Information flow control techniques traditionally have been based on static or symbolic analyses — limited in scalability and specialized to particular languages. When programs do leak secrets there are no approaches to automatically repair them unless the leak causes a functional test to fail. We present our vision for HyperGI, a genetic improvement framework that detects, localizes and repairs information leakage. Key elements of HyperGI include (1) the use of two orthogonal test suites, (2) a dynamic leak detection approach which estimates and localizes potential leaks, and (3) a repair component that produces a candidate patch using genetic improvement. We demonstrate the successful use of HyperGI on several programs with no failing functional test cases. We manually examine the resulting patches and identify trade-offs and future directions for fully realizing our vision.  more » « less
Award ID(s):
1901543 1909688
NSF-PAR ID:
10310886
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEEACM International Conference on Automated Software Engineering
ISSN:
2643-1572
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Internet of Things (IoT) is a vast collection of interconnected sensors, devices, and services that share data and information over the Internet with the objective of leveraging multiple information sources to optimize related systems. The technologies associated with the IoT have significantly improved the quality of many existing applications by reducing costs, improving functionality, increasing access to resources, and enhancing automation. The adoption of IoT by industries has led to the next industrial revolution: Industry 4.0. The rise of the Industrial IoT (IIoT) promises to enhance factory management, process optimization, worker safety, and more. However, the rollout of the IIoT is not without significant issues, and many of these act as major barriers that prevent fully achieving the vision of Industry 4.0. One major area of concern is the security and privacy of the massive datasets that are captured and stored, which may leak information about intellectual property, trade secrets, and other competitive knowledge. As a way forward toward solving security and privacy concerns, we aim in this paper to identify common input-output (I/O) design patterns that exist in applications of the IIoT. These design patterns enable constructing an abstract model representation of data flow semantics used by such applications, and therefore better understand how to secure the information related to IIoT operations. In this paper, we describe communication protocols and identify common I/O design patterns for IIoT applications with an emphasis on data flow in edge devices, which, in the industrial control system (ICS) setting, are most often involved in process control or monitoring. 
    more » « less
  2. null (Ed.)
    We introduce Blade, a new approach to automatically and efficiently eliminate speculative leaks from cryptographic code. Blade is built on the insight that to stop leaks via speculative execution, it suffices to cut the dataflow from expressions that speculatively introduce secrets ( sources ) to those that leak them through the cache ( sinks ), rather than prohibit speculation altogether. We formalize this insight in a static type system that (1) types each expression as either transient , i.e., possibly containing speculative secrets or as being stable , and (2) prohibits speculative leaks by requiring that all sink expressions are stable. Blade relies on a new abstract primitive, protect , to halt speculation at fine granularity. We formalize and implement protect using existing architectural mechanisms, and show how Blade’s type system can automatically synthesize a minimal number of protect s to provably eliminate speculative leaks. We implement Blade in the Cranelift WebAssembly compiler and evaluate our approach by repairing several verified, yet vulnerable WebAssembly implementations of cryptographic primitives. We find that Blade can fix existing programs that leak via speculation automatically , without user intervention, and efficiently even when using fences to implement protect . 
    more » « less
  3. INTRODUCTION During the independent process of cereal evolution, many trait shifts appear to have been under convergent selection to meet the specific needs of humans. Identification of convergently selected genes across cereals could help to clarify the evolution of crop species and to accelerate breeding programs. In the past several decades, researchers have debated whether convergent phenotypic selection in distinct lineages is driven by conserved molecular changes or by diverse molecular pathways. Two of the most economically important crops, maize and rice, display some conserved phenotypic shifts—including loss of seed dispersal, decreased seed dormancy, and increased grain number during evolution—even though they experienced independent selection. Hence, maize and rice can serve as an excellent system for understanding the extent of convergent selection among cereals. RATIONALE Despite the identification of a few convergently selected genes, our understanding of the extent of molecular convergence on a genome-wide scale between maize and rice is very limited. To learn how often selection acts on orthologous genes, we investigated the functions and molecular evolution of the grain yield quantitative trait locus KRN2 in maize and its rice ortholog OsKRN2 . We also identified convergently selected genes on a genome-wide scale in maize and rice, using two large datasets. RESULTS We identified a selected gene, KRN2 ( kernel row number2 ), that differs between domesticated maize and its wild ancestor, teosinte. This gene underlies a major quantitative trait locus for kernel row number in maize. Selection in the noncoding upstream regions resulted in a reduction of KRN2 expression and an increased grain number through an increase in kernel rows. The rice ortholog, OsKRN2 , also underwent selection and negatively regulates grain number via control of secondary panicle branches. These orthologs encode WD40 proteins and function synergistically with a gene of unknown function, DUF1644, which suggests that a conserved protein interaction controls grain number in maize and rice. Field tests show that knockout of KRN2 in maize or OsKRN2 in rice increased grain yield by ~10% and ~8%, respectively, with no apparent trade-off in other agronomic traits. This suggests potential applications of KRN2 and its orthologs for crop improvement. On a genome-wide scale, we identified a set of 490 orthologous genes that underwent convergent selection during maize and rice evolution, including KRN2/OsKRN2 . We found that the convergently selected orthologous genes appear to be significantly enriched in two specific pathways in both maize and rice: starch and sucrose metabolism, and biosynthesis of cofactors. A deep analysis of convergently selected genes in the starch metabolic pathway indicates that the degree of genetic convergence via convergent selection is related to the conservation and complexity of the gene network for a given selection. CONCLUSION Our findings show that common phenotypic shifts during maize and rice evolution acting on conserved genes are driven at least in part by convergent selection, which in maize and rice likely occurred both during and after domestication. We provide evolutionary and functional evidence on the convergent selection of KRN2/OsKRN2 for grain number between maize and rice. We further found that a complete loss-of-function allele of KRN2/OsKRN2 increased grain yield without an apparent negative impact on other agronomic traits. Exploring the role of KRN2/OsKRN2 and other convergently selected genes across the cereals could provide new opportunities to enhance the production of other global crops. Shared selected orthologous genes in maize and rice for convergent phenotypic shifts during domestication and improvement. By comparing 3163 selected genes in maize and 18,755 selected genes in rice, we identified 490 orthologous gene pairs, including KRN2 and its rice ortholog OsKRN2 , as having been convergently selected. Knockout of KRN2 in maize or OsKRN2 in rice increased grain yield by increasing kernel rows and secondary panicle branches, respectively. 
    more » « less
  4. INTRODUCTION Neurons are by far the most diverse of all cell types in animals, to the extent that “cell types” in mammalian brains are still mostly heterogeneous groups, and there is no consensus definition of the term. The Drosophila optic lobes, with approximately 200 well-defined cell types, provides a tractable system with which to address the genetic basis of neuronal type diversity. We previously characterized the distinct developmental gene expression program of each of these types using single-cell RNA sequencing (scRNA-seq), with one-to-one correspondence to the known morphological types. RATIONALE The identity of fly neurons is determined by temporal and spatial patterning mechanisms in stem cell progenitors, but it remained unclear how these cell fate decisions are implemented and maintained in postmitotic neurons. It was proposed in Caenorhabditis elegans that unique combinations of terminal selector transcription factors (TFs) that are continuously expressed in each neuron control nearly all of its type-specific gene expression. This model implies that it should be possible to engineer predictable and complete switches of identity between different neurons just by modifying these sustained TFs. We aimed to test this prediction in the Drosophila visual system. RESULTS Here, we used our developmental scRNA-seq atlases to identify the potential terminal selector genes in all optic lobe neurons. We found unique combinations of, on average, 10 differentially expressed and stably maintained (across all stages of development) TFs in each neuron. Through genetic gain- and loss-of-function experiments in postmitotic neurons, we showed that modifications of these selector codes are sufficient to induce predictable switches of identity between various cell types. Combinations of terminal selectors jointly control both developmental (e.g., morphology) and functional (e.g., neurotransmitters and their receptors) features of neurons. The closely related Transmedullary 1 (Tm1), Tm2, Tm4, and Tm6 neurons (see the figure) share a similar code of terminal selectors, but can be distinguished from each other by three TFs that are continuously and specifically expressed in one of these cell types: Drgx in Tm1, Pdm3 in Tm2, and SoxN in Tm6. We showed that the removal of each of these selectors in these cell types reprograms them to the default Tm4 fate. We validated these conversions using both morphological features and molecular markers. In addition, we performed scRNA-seq to show that ectopic expression of pdm3 in Tm4 and Tm6 neurons converts them to neurons with transcriptomes that are nearly indistinguishable from that of wild-type Tm2 neurons. We also show that Drgx expression in Tm1 neurons is regulated by Klumpfuss, a TF expressed in stem cells that instructs this fate in progenitors, establishing a link between the regulatory programs that specify neuronal fates and those that implement them. We identified an intronic enhancer in the Drgx locus whose chromatin is specifically accessible in Tm1 neurons and in which Klu motifs are enriched. Genomic deletion of this region knocked down Drgx expression specifically in Tm1 neurons, leaving it intact in the other cell types that normally express it. We further validated this concept by demonstrating that ectopic expression of Vsx (visual system homeobox) genes in Mi15 neurons not only converts them morphologically to Dm2 neurons, but also leads to the loss of their aminergic identity. Our results suggest that selector combinations can be further sculpted by receptor tyrosine kinase signaling after neurogenesis, providing a potential mechanism for postmitotic plasticity of neuronal fates. Finally, we combined our transcriptomic datasets with previously generated chromatin accessibility datasets to understand the mechanisms that control brain wiring downstream of terminal selectors. We built predictive computational models of gene regulatory networks using the Inferelator framework. Experimental validations of these networks revealed how selectors interact with ecdysone-responsive TFs to activate a large and specific repertoire of cell surface proteins and other effectors in each neuron at the onset of synapse formation. We showed that these network models can be used to identify downstream effectors that mediate specific cellular decisions during circuit formation. For instance, reduced levels of cut expression in Tm2 neurons, because of its negative regulation by pdm3 , controls the synaptic layer targeting of their axons. Knockdown of cut in Tm1 neurons is sufficient to redirect their axons to the Tm2 layer in the lobula neuropil without affecting other morphological features. CONCLUSION Our results support a model in which neuronal type identity is primarily determined by a relatively simple code of continuously expressed terminal selector TFs in each cell type throughout development. Our results provide a unified framework of how specific fates are initiated and maintained in postmitotic neurons and open new avenues to understanding synaptic specificity through gene regulatory networks. The conservation of this regulatory logic in both C. elegans and Drosophila makes it likely that the terminal selector concept will also be useful in understanding and manipulating the neuronal diversity of mammalian brains. Terminal selectors enable predictive cell fate reprogramming. Tm1, Tm2, Tm4, and Tm6 neurons of the Drosophila visual system share a core set of TFs continuously expressed by each cell type (simplified). The default Tm4 fate is overridden by the expression of a single additional terminal selector to generate Tm1 ( Drgx ), Tm2 ( pdm3 ), or Tm6 ( SoxN ) fates. 
    more » « less
  5. Abstract

    Plant architecture is 1 of the most important factors that determines crop yield potential and productivity. In apple (Malus domestica), genetic improvement of tree architecture has been challenging due to a long juvenile phase and growth as complex trees composed of a distinct scion and a rootstock. To better understand the genetic control of apple tree architecture, the dominant weeping growth phenotype was investigated. We report the identification of MdLAZY1A (MD13G1122400) as the genetic determinant underpinning the Weeping (W) locus that largely controls weeping growth in Malus. MdLAZY1A is 1 of the 4 paralogs in apple that are most closely related to AtLAZY1 involved in gravitropism in Arabidopsis (Arabidopsis thaliana). The weeping allele (MdLAZY1A-W) contains a single nucleotide mutation c.584T>C that leads to a leucine to proline (L195P) substitution within a predicted transmembrane domain that colocalizes with Region III, 1 of the 5 conserved regions in LAZY1-like proteins. Subcellular localization revealed that MdLAZY1A localizes to the plasma membrane and nucleus in plant cells. Overexpressing the weeping allele in apple cultivar Royal Gala (RG) with standard growth habit impaired its gravitropic response and altered the growth to weeping-like. Suppressing the standard allele (MdLAZY1A-S) by RNA interference (RNAi) in RG similarly changed the branch growth direction to downward. Overall, the L195P mutation in MdLAZY1A is genetically causal for weeping growth, underscoring not only the crucial roles of residue L195 and Region III in MdLAZY1A-mediated gravitropic response but also a potential DNA base editing target for tree architecture improvement in Malus and other crops.

     
    more » « less