Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences canmore »
CitSci.org & PPSR Core: Sharing biodiversity observations across platforms
CitSci.org is a global citizen science software platform and support organization housed at Colorado State University. The mission of CitSci is to help people do high quality citizen science by amplifying impacts and outcomes. This platform hosts over one thousand projects and a diverse volunteer base that has amassed over one million observations of the natural world, focused on biodiversity and ecosystem sustainability. It is a custom platform built using open source components including: PostgreSQL, Symfony, Vue.js, with React Native for the mobile apps. CitSci sets itself apart from other Citizen Science platforms through the flexibility in the types of projects it supports rather than having a singular focus. This flexibility allows projects to define their own datasheets and methodologies. The diversity of programs we host motivated us to take a founding role in the design of the PPSR Core, a set of global, transdisciplinary data and metadata standards for use in Public Participation in Scientific Research (Citizen Science) projects. Through an international partnership between the Citizen Science Association, European Citizen Science Association, and Australian Citizen Science Association, the PPSR team and associated standards enable interoperability of citizen science projects, datasets, and observations. Here we share our experience over the more »
- Award ID(s):
- 1835272
- Publication Date:
- NSF-PAR ID:
- 10310933
- Journal Name:
- Biodiversity Information Science and Standards
- Volume:
- 5
- ISSN:
- 2535-0897
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
International collaboration between collections, aggregators, and researchers within the biodiversity community and beyond is becoming increasingly important in our efforts to support biodiversity, conservation and the life of the planet. The social, technical, logistical and financial aspects of an equitable biodiversity data landscape – from workforce training and mobilization of linked specimen data, to data integration, use and publication – must be considered globally and within the context of a growing biodiversity crisis. In recent years, several initiatives have outlined paths forward that describe how digital versions of natural history specimens can be extended and linked with associated data. In the United States, Webster (2017) presented the “extended specimen”, which was expanded upon by Lendemer et al. (2019) through the work of the Biodiversity Collections Network (BCoN). At the same time, a “digital specimen” concept was developed by DiSSCo in Europe (Hardisty 2020). Both the extended and digital specimen concepts depict a digital proxy of an analog natural history specimen, whose digital nature provides greater capabilities such as being machine-processable, linkages with associated data, globally accessible information-rich biodiversity data, improved tracking, attribution and annotation, additional opportunities for data use and cross-disciplinary collaborations forming the basis for FAIR (Findable, Accessible, Interoperable,more »
-
Involving the public in scientific discovery offers opportunities for engagement, learning, participation, and action. Since its launch in 2007, the CitSci.org platform has supported hundreds of community-driven citizen science projects involving thousands of participants who have generated close to a million scientific measurements around the world. Members using CitSci.org follow their curiosities and concerns to develop, lead, or simply participate in research projects. While professional scientists are trained to make ethical determinations related to the collection of, access to, and use of information, citizen scientists and practitioners may be less aware of such issues and more likely to become involved in ethical dilemmas. In this era of big and open data, where data sharing is encouraged and open science is promoted, privacy and openness considerations can often be overlooked. Platforms that support the collection, use, and sharing of data and personal information need to consider their responsibility to protect the rights to and ownership of data, the provision of protection options for data and members, and at the same time provide options for openness. This requires critically considering both intended and unintended consequences of the use of platforms, data, and volunteer information. Here, we use our journey developing CitSci.org tomore »
-
The massive surge in the amount of observational field data demands richer and more meaningful collab-oration between data scientists and geoscientists. This document was written by members of the Working Group on Case Studies of the NSF-funded RCN on Intelli-gent Systems Research To Support Geosciences (IS-GEO, https:// is-geo.org/ ) to describe our vision to build and enhance such collaboration through the use of specially-designed benchmark datasets. Benchmark datasets serve as summary descriptions of problem areas, providing a simple interface between disciplines without requiring extensive background knowledge. Benchmark data intend to address a number of overarching goals. First, they are concrete, identifiable, and public, which results in a natural coordination of research efforts across multiple disciplines and institutions. Second, they provide multi-fold opportunities for objective comparison of various algorithms in terms of computational costs, accuracy, utility and other measurable standards, to address a particular question in geoscience. Third, as materials for education, the benchmark data cultivate future human capital and interest in geoscience problems and data science methods. Finally, a concerted effort to produce and publish benchmarks has the potential to spur the development of new data science methods, while provid-ing deeper insights into many fundamental problems in modern geosciences. Thatmore »
-
The massive surge in the amount of observational field data demands richer and more meaningful collab- oration between data scientists and geoscientists. This document was written by members of the Working Group on Case Studies of the NSF-funded RCN on Intelli- gent Systems Research To Support Geosciences (IS-GEO, https://is-geo.org/) to describe our vision to build and enhance such collaboration through the use of specially- designed benchmark datasets. Benchmark datasets serve as summary descriptions of problem areas, providing a simple interface between disciplines without requiring extensive background knowledge. Benchmark data intend to address a number of overarching goals. First, they are concrete, identifiable, and public, which results in a natural coordination of research efforts across multiple disciplines and institutions. Second, they provide multi- fold opportunities for objective comparison of various algorithms in terms of computational costs, accuracy, utility and other measurable standards, to address a particular question in geoscience. Third, as materials for education, the benchmark data cultivate future human capital and interest in geoscience problems and data science methods. Finally, a concerted effort to produce and publish benchmarks has the potential to spur the development of new data science methods, while provid- ing deeper insights into many fundamental problems inmore »