Involving the public in scientific discovery offers opportunities for engagement, learning, participation, and action. Since its launch in 2007, the CitSci.org platform has supported hundreds of community-driven citizen science projects involving thousands of participants who have generated close to a million scientific measurements around the world. Members using CitSci.org follow their curiosities and concerns to develop, lead, or simply participate in research projects. While professional scientists are trained to make ethical determinations related to the collection of, access to, and use of information, citizen scientists and practitioners may be less aware of such issues and more likely to become involved in ethical dilemmas. In this era of big and open data, where data sharing is encouraged and open science is promoted, privacy and openness considerations can often be overlooked. Platforms that support the collection, use, and sharing of data and personal information need to consider their responsibility to protect the rights to and ownership of data, the provision of protection options for data and members, and at the same time provide options for openness. This requires critically considering both intended and unintended consequences of the use of platforms, data, and volunteer information. Here, we use our journey developing CitSci.org to argue that incorporating customization into platforms through flexible design options for project managers shifts the decision-making from top-down to bottom-up and allows project design to be more responsive to goals. To protect both people and data, we developed—and continue to improve—options that support various levels of “open” and “closed” access permissions for data and membership participation. These options support diverse governance styles that are responsive to data uses, traditional and indigenous knowledge sensitivities, intellectual property rights, personally identifiable information concerns, volunteer preferences, and sensitive data protections. We present a typology for citizen science openness choices, their ethical considerations, and strategies that we are actively putting into practice to expand privacy options and governance models based on the unique needs of individual projects using our platform. 
                        more » 
                        « less   
                    
                            
                            CitSci.org & PPSR Core: Sharing biodiversity observations across platforms
                        
                    
    
            CitSci.org is a global citizen science software platform and support organization housed at Colorado State University. The mission of CitSci is to help people do high quality citizen science by amplifying impacts and outcomes. This platform hosts over one thousand projects and a diverse volunteer base that has amassed over one million observations of the natural world, focused on biodiversity and ecosystem sustainability. It is a custom platform built using open source components including: PostgreSQL, Symfony, Vue.js, with React Native for the mobile apps. CitSci sets itself apart from other Citizen Science platforms through the flexibility in the types of projects it supports rather than having a singular focus. This flexibility allows projects to define their own datasheets and methodologies. The diversity of programs we host motivated us to take a founding role in the design of the PPSR Core, a set of global, transdisciplinary data and metadata standards for use in Public Participation in Scientific Research (Citizen Science) projects. Through an international partnership between the Citizen Science Association, European Citizen Science Association, and Australian Citizen Science Association, the PPSR team and associated standards enable interoperability of citizen science projects, datasets, and observations. Here we share our experience over the past 10+ years of supporting biodiversity research both as developers of the CitSci.org platform and as stewards of, and contributors to, the PPSR Core standard. Specifically, we share details about: the origin, development, and informatics infrastructure for CitSci our support for biodiversity projects such as population and community surveys our experiences in platform interoperability through PPSR Core working with the Zooniverse, SciStarter, and CyberTracker data quality data sharing goals and use cases. the origin, development, and informatics infrastructure for CitSci our support for biodiversity projects such as population and community surveys our experiences in platform interoperability through PPSR Core working with the Zooniverse, SciStarter, and CyberTracker data quality data sharing goals and use cases. We conclude by sharing overall successes, limitations, and recommendations as they pertain to trust and rigor in citizen science data sharing and interoperability. As the scientific community moves forward, we show that Citizen Science is a key tool to enabling a systems-based approach to ecosystem problems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1835272
- PAR ID:
- 10310933
- Date Published:
- Journal Name:
- Biodiversity Information Science and Standards
- Volume:
- 5
- ISSN:
- 2535-0897
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Over the last decade, the United States paleontological collections community has invested heavily in the digitization of specimen-based data, including over 10 million USD funded through the National Science Foundation’s Advancing Digitization of Biodiversity Collections program. Fossil specimen data—9.0 million records and counting (Global Biodiversity Information Facility 2024)—are now accessible on open science platforms such as the Global Biodiversity Information Facility (GBIF). However, the full potential of this data is far from realized due to fundamental challenges associated with mobilization, discoverability, and interoperability of paleontological information within the existing cyberinfrastructure landscape and data pipelines. Additionally, it can be difficult for individuals with varying expertise to develop a comprehensive understanding of the existing landscape due to its breadth and complexity. Here, we present preliminary results from a project aiming to explore how we might address these problems. Funding from the US National Science Foundation (NSF) to the University of Colorado Museum of Natural History, Smithsonian National Museum of Natural History, and Arizona State University will result in, among other products, an “ecosystem map” for the paleontological collections community. This map will be an information-rich visualization of entities (e.g. concepts, systems, platforms, mechanisms, drivers, tools, documentation, data, standards, people, organizations) operating in, intersecting with, or existing in parallel to our domain. We are inspired and informed by similar efforts to map the biodiversity informatics landscape (Bingham et al. 2017) and the research infrastructure landscape (Distributed System of Scientific Collections 2024), as well as by many ongoing metadata cataloging projects, e.g. re3data and the Global Registry of Scientific Collections (GRSciColl). Our strategy for developing this ecosystem map is to model the existing information and systems landscape by characterizing entities, e.g. potentially in a graph database as nodes with relationships to other nodes. The ecosystem map will enable us to provide guidance for communities workingacrossdifferent sectors of the landscape, promoting a shared understanding of the ecosystem that everyone works in together. We can also use the map to identify points of entry and engagement at various stages of the paleontological data process, and to engage diverse memberswithinthe paleontological community. We see three primary user types for this map: people new(er) to the community, people with expertise in a subset of the community, and people working to integrate initiatives and systems across communities. Each of these user types needs tailored access to the ecosystem map and its community knowledge. By promoting shared knowledge with the map, users will be able to identify their own space within the ecosystem and the connections or partnerships that they can utilize to expand their knowledge or resources, relieving the burden on any single individual to hold a comprehensive understanding. For example, the flow of taxonomic information between publications, collections, digital resources, and biodiversity aggregators is not straightforward or easy to understand. A person with expertise in collections care may want to use the ecosystem map to understand why taxonomic identifications associated with their specimen occurrence records are showing up incorrectly when published to GBIF. We envision that our final ecosystem map will visualize the flow of taxonomic information and how it is used to interpret specimen occurrence data, thereby highlighting to this user where problems may be happening and whom to ask for help in addressing them (Fig. 1). Ultimately, development of this map will allow us to identify mobilization pathways for paleontological data, highlight core cyberinfrastructure resources, define cyberinfrastructure gaps, strategize future partnerships, promote shared knowledge, and engage a broader array of expertise in the process. Contributing domain-based evidence FAIRly*2 requires expertise that bridges the content (e.g. paleontology) and the mechanics (e.g. informatics). By centering the role of humans in open science cyberinfrastructure throughout our process, we hope to develop systems that create and sustain such expertise.more » « less
- 
            Many scientific domains gather sufficient labels to train machine algorithms through human-in-the-loop techniques provided by the this http URL citizen science platform. As the range of projects, task types and data rates increase, acceleration of model training is of paramount concern to focus volunteer effort where most needed. The application of Transfer Learning (TL) between Zooniverse projects holds promise as a solution. However, understanding the effectiveness of TL approaches that pretrain on large-scale generic image sets vs. images with similar characteristics possibly from similar tasks is an open challenge. We apply a generative segmentation model on two Zooniverse project-based data sets: (1) to identify fat droplets in liver cells (FatChecker; FC) and (2) the identification of kelp beds in satellite images (Floating Forests; FF) through transfer learning from the first project. We compare and contrast its performance with a TL model based on the COCO image set, and subsequently with baseline counterparts. We find that both the FC and COCO TL models perform better than the baseline cases when using >75% of the original training sample size. The COCO-based TL model generally performs better than the FC-based one, likely due to its generalized features. Our investigations provide important insights into usage of TL approaches on multi-domain data hosted across different Zooniverse projects, enabling future projects to accelerate task completion.more » « less
- 
            Haldorai, Anandakumar (Ed.)Darwin Core, the data standard used for sharing modern biodiversity and paleodiversity occurrence records, has previously lacked proper mechanisms for reporting what is known about the estimated age range of specimens from deep time. This has led to data providers putting these data in fields where they cannot easily be found by users, which impedes the reuse and improvement of these data by other researchers. Here we describe the development of the Chronometric Age Extension to Darwin Core, a ratified, community-developed extension that enables the reporting of ages of specimens from deeper time and the evidence supporting these estimates. The extension standardizes reporting about the methods or assays used to determine an age and other critical information like uncertainty. It gives data providers flexibility about the level of detail reported, focusing on the minimum information needed for reuse while still allowing for significant detail if providers have it. Providing a standardized format for reporting these data will make them easier to find and search and enable researchers to pinpoint specimens of interest for data improvement or accumulate more data for broad temporal studies. The Chronometric Age Extension was also the first community-managed vocabulary to undergo the new Biodiversity Informatics Standards (TDWG) review and ratification process, thus providing a blueprint for future Darwin Core extension development.more » « less
- 
            Abstract Amidst numerous global crises, decision‐makers have recognized the critical need for fact‐based advice, driving unprecedented data collection. However, a significant gap persists between data availability and knowledge generation, primarily due to time and resource constraints. To bridge this gap, we propose involving a novel group of citizen scientists: volunteer code developers.Utilizing the modular, open‐source analysis platform MoveApps, we were able to engage 12 volunteer coders in a challenge to create tools for movement ecology, aimed at animal conservation. These volunteers developed functioning applications capable of analysing animal tracking data to identify stationary behaviour, estimate ranges and movement corridors and assess human–wildlife conflicts using data sets from human infrastructure, such as OpenStreetMap.Engaging citizen scientists in developing code has surfaced three primary challenges: (i) Community Building—attracting the right participants; (ii) Community Involvement—maintaining quality standards and directing tasks effectively; and (iii) Community Retention—ensuring long‐term engagement. We explore strategies to overcome these challenges and share lessons learnt from our coding challenge experience. Our approaches include engaging the community through their own preferred channels, providing an accessible open‐source tool, defining specific use cases in detail, ensuring quality through feedback, fostering self‐organized community exchanges and prominently illustrating the impact of contributions.We also advocate for other disciplines to consider leveraging volunteer involvement, alongside artificial intelligence, for data analysis and generating state‐of‐the‐art, fact‐based insight to address critical issues such as the global decline in biodiversity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    