Optical coherence tomography (OCT) imaging enables high resolution visualization of sub-surface tissue microstructures. However, OCT image analysis using deep learning is hampered by limited diverse training data to meet performance requirements and high inference latency for real-time applications. To address these challenges, we developed Octascope, a lightweight domain-specific convolutional neural network (CNN) - based model designed for OCT image analysis. Octascope was pre-trained using a curriculum learning approach, which involves sequential training, first on natural images (ImageNet), then on OCT images from retinal, abdominal, and renal tissues, to progressively acquire transferable knowledge. This multi-domain pre-training enables Octascope to generalize across varied tissue types. In two downstream tasks, Octascope demonstrated notable improvements in predictive accuracy compared to alternative approaches. In the epidural tissue detection task, our method surpassed single-task learning with fine-tuning by 9.13% and OCT-specific transfer learning by 5.95% in accuracy. Octascope outperformed VGG16 and ResNet50 by 5.36% and 6.66% in a retinal diagnosis task, respectively. In comparison to a Transformer-based OCT foundation model - RETFound, Octascope delivered 2 to 4.4 times faster inference speed with slightly better predictive accuracies in both downstream tasks. Octascope represented a significant advancement for OCT image analysis by providing an effective balance between computational efficiency and diagnostic accuracy for real-time clinical applications.
more »
« less
From fat droplets to floating forests: cross-domain transfer learning using a PatchGAN-based segmentation model
Many scientific domains gather sufficient labels to train machine algorithms through human-in-the-loop techniques provided by the this http URL citizen science platform. As the range of projects, task types and data rates increase, acceleration of model training is of paramount concern to focus volunteer effort where most needed. The application of Transfer Learning (TL) between Zooniverse projects holds promise as a solution. However, understanding the effectiveness of TL approaches that pretrain on large-scale generic image sets vs. images with similar characteristics possibly from similar tasks is an open challenge. We apply a generative segmentation model on two Zooniverse project-based data sets: (1) to identify fat droplets in liver cells (FatChecker; FC) and (2) the identification of kelp beds in satellite images (Floating Forests; FF) through transfer learning from the first project. We compare and contrast its performance with a TL model based on the COCO image set, and subsequently with baseline counterparts. We find that both the FC and COCO TL models perform better than the baseline cases when using >75% of the original training sample size. The COCO-based TL model generally performs better than the FC-based one, likely due to its generalized features. Our investigations provide important insights into usage of TL approaches on multi-domain data hosted across different Zooniverse projects, enabling future projects to accelerate task completion.
more »
« less
- PAR ID:
- 10465067
- Date Published:
- Journal Name:
- CIKM '22: Proceedings of the 31st ACM International Conference on Information & Knowledge Management: Workshop on Human-in-the-loop Data Curation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introduction Multi-series CT (MSCT) scans, including non-contrast CT (NCCT), CT Perfusion (CTP), and CT Angiography (CTA), are widely used in acute stroke imaging. While each scan has its advantage in disease diagnosis, the varying image resolution of different series hinders the ability of the radiologist to discern subtle suspicious findings. Besides, higher image quality requires high radiation doses, leading to increases in health risks such as cataract formation and cancer induction. Thus, it is highly crucial to develop an approach to improve MSCT resolution and to lower radiation exposure. Hypothesis MSCT imaging of the same patient is highly correlated in structural features, the transferring and integration of the shared and complementary information from different series are beneficial for achieving high image quality. Methods We propose TL-GAN, a learning-based method by using Transfer Learning (TL) and Generative Adversarial Network (GAN) to reconstruct high-quality diagnostic images. Our TL-GAN method is evaluated on 4,382 images collected from nine patients’ MSCT scans, including 415 NCCT slices, 3,696 CTP slices, and 271 CTA slices. We randomly split the nine patients into a training set (4 patients), a validation set (2 patients), and a testing set (3 patients). In preprocessing, we remove the background and skull and visualize in brain window. The low-resolution images (1/4 of the original spatial size) are simulated by bicubic down-sampling. For training without TL, we train different series individually, and for with TL, we follow the scanning sequence (NCCT, CTP, and CTA) by finetuning. Results The performance of TL-GAN is evaluated by the peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) index on 184 NCCT, 882 CTP, and 107 CTA test images. Figure 1 provides both visual (a-c) and quantity (d-f) comparisons. Through TL-GAN, there is a significant improvement with TL than without TL (training from scratch) for NCCT, CTP, and CTA images, respectively. These significances of performance improvement are evaluated by one-tailed paired t-tests (p < 0.05). We enlarge the regions of interest for detail visual comparisons. Further, we evaluate the CTP performance by calculating the perfusion maps, including cerebral blood flow (CBF) and cerebral blood volume (CBV). The visual comparison of the perfusion maps in Figure 2 demonstrate that TL-GAN is beneficial for achieving high diagnostic image quality, which are comparable to the ground truth images for both CBF and CBV maps. Conclusion Utilizing TL-GAN can effectively improve the image resolution for MSCT, provides radiologists more image details for suspicious findings, which is a practical solution for MSCT image quality enhancement.more » « less
-
Citizen science projects face a dilemma in relying on contributions from volunteers to achieve their scientific goals: providing volunteers with explicit training might increase the quality of contributions, but at the cost of losing the work done by newcomers during the training period, which for many is the only work they will contribute to the project. Based on research in cognitive science on how humans learn to classify images, we have designed an approach to use machine learning to guide the presentation of tasks to newcomers that help them more quickly learn how to do the image classification task while still contributing to the work of the project. A Bayesian model for tracking volunteer learning is presented.more » « less
-
null (Ed.)Given its demonstrated ability in analyzing and revealing patterns underlying data, Deep Learning (DL) has been increasingly investigated to complement physics-based models in various aspects of smart manufacturing, such as machine condition monitoring and fault diagnosis, complex manufacturing process modeling, and quality inspection. However, successful implementation of DL techniques relies greatly on the amount, variety, and veracity of data for robust network training. Also, the distributions of data used for network training and application should be identical to avoid the internal covariance shift problem that reduces the network performance applicability. As a promising solution to address these challenges, Transfer Learning (TL) enables DL networks trained on a source domain and task to be applied to a separate target domain and task. This paper presents a domain adversarial TL approach, based upon the concepts of generative adversarial networks. In this method, the optimizer seeks to minimize the loss (i.e., regression or classification accuracy) across the labeled training examples from the source domain while maximizing the loss of the domain classifier across the source and target data sets (i.e., maximizing the similarity of source and target features). The developed domain adversarial TL method has been implemented on a 1-D CNN backbone network and evaluated for prediction of tool wear propagation, using NASA's milling dataset. Performance has been compared to other TL techniques, and the results indicate that domain adversarial TL can successfully allow DL models trained on certain scenarios to be applied to new target tasks.more » « less
-
Metal–organic frameworks (MOFs) are promising materials with various applications, and machine learning (ML) techniques can enable their design and understanding of structure–property relationships. In this paper, we use machine learning (ML) to cluster the MOFs using two different approaches. For the first set of clusters, we decompose the data using the textural properties and cluster the resulting components. We separately cluster the MOF space with respect to their topology. The feature data from each of the clusters were then fed into separate neural networks (NNs) for direct learning on an adsorption task (methane or hydrogen). The resulting NNs were then used in transfer learning (TL) where only the last NN layer was retrained. The results show significant differences in TL performance based on which cluster is chosen for direct learning. We find TL performance depends on the Euclidean distance in the decomposed feature space between the clusters involved in the direct and TL. Similar results were found when TL was performed simultaneously across both types of clusters and adsorption tasks. We note that methane adsorption was a better source task than hydrogen adsorption. Overall, the approach was able to identify MOFs with the most transferable information, leading to valuable insights and a more comprehensive understanding of the MOF landscape. This highlights the method's potential to generate a deeper understanding of complex systems and provides an opportunity for its application in alternative datasets.more » « less
An official website of the United States government

