Abstract Kelp forests are among the world's most productive marine ecosystems, and they have the potential to locally ameliorate ocean acidification (OA). In order to understand the contribution of kelp metabolism to local biogeochemistry, we must first quantify the natural variability and the relative contributions of physical and biological drivers to biogeochemical changes in space and time. We deployed an extensive instrument array in Monterey Bay, CA, inside and outside of a kelp forest to assess the degree to which giant kelp (Macrocystis pyrifera) locally ameliorates present‐day acidic conditions which we expect to be exacerbated by OA. Temperature, pH, and O2variability occurred at semidiurnal, diurnal (tidal and diel), and longer upwelling event periods. Mean conditions were driven by offshore wind forcing and the delivery of upwelled water via nearshore internal bores. While near‐surface pH and O2were similar inside and outside the kelp forest, surface pH was elevated inside the kelp compared to outside, suggesting that the kelp canopy locally increased surface pH. We observed the greatest acidification stress deeper in the water column where pCO2reached levels as high as 1,300 μatm and aragonite undersaturation (ΩAr < 1) occurred on several occasions. At this site, kelp canopy modification of seawater properties, and thus any ameliorating effect against acidification, is greatest in a narrow band of surface water. The spatial disconnect between stress exposure at depth and reduction of acidification stress at the surface warrants further assessment of utilizing kelp forests as provisioners of local OA mitigation. 
                        more » 
                        « less   
                    
                            
                            Limited biogeochemical modification of surface waters by kelp forest canopies: Influence of kelp metabolism and site‐specific hydrodynamics
                        
                    
    
            Climate change is causing decreases in pH and dissolved oxygen (DO) in coastal ecosystems. Canopy-forming giant kelp can locally increase DO and pH through photosynthesis, with the most pronounced effect expected in surface waters where the bulk of kelp biomass resides. However, limited observations are available from waters in canopies and measurements at depth show limited potential of giant kelp to ameliorate chemical conditions. We quantified spatiotemporal variability of surface biogeochemistry and assessed the role of biological and physical drivers in pH and DO modification at two locations differing in hydrodynamics inside and outside of two kelp forests in Monterey Bay, California in summer 2019. pH, DO, dissolved inorganic carbon (DIC), and temperature were measured at and near the surface, in conjunction with physical parameters (currents and pressure), nutrients, and metrics of phytoplankton and kelp biological processes. DO and pH were highest, with lower DIC, at the surface inside kelp forests. However, differences inside vs. outside of kelp forests were small (DO 6–8%, pH 0.05 higher in kelp). The kelp forest with lower significant wave height and slower currents had greater modification of surface biogeochemistry as indicated by larger diel variation and slightly higher mean DO and pH, despite lower kelp growth rates. Differences between kelp forests and offshore areas were not driven by nutrients or phytoplankton. Although kelp had clear effects on biogeochemistry, which were modulated by hydrodynamics, the small magnitude and spatial extent of the effect limits the potential of kelp forests to mitigate acidification and hypoxia. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10310993
- Date Published:
- Journal Name:
- Limnology and Oceanography
- ISSN:
- 0024-3590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Giant kelpMacrocystis pyriferaprovides the foundation for immense biodiversity on the coast of California, USA. Kelp forests can change seawater retention time, altering water chemistry, including pH and dissolved oxygen (DO), as well as the magnitude and predictability of variability in the same properties. Environmental heterogeneity across space and time could drive organismal performance and processes such as transgenerational plasticity (TGP), where parental experience modifies the offspring phenotype, potentially conferring tolerance to future environmental stress. We monitored environmental variability by deploying temperature, pH, and DO sensors inside and outside a temperate kelp forest in the Santa Barbara Channel (SBC) throughout the gametogenesis period of a key herbivore, the purple urchinStrongylocentrotus purpuratus. Over the 6 mo period, pH and temperature were slightly elevated inside the kelp forest, accompanied by more predictable, low-frequency variability relative to outside. AdultS. purpuratuswere conditioned inside and outside the kelp spanning gametogenesis. The urchins were spawned and their larvae were raised under high (1053 µatm) and lowpCO2(435 µatm) at 15°C in the laboratory to assess their physiological response to the maternal and developmental environments. Larvae raised under highpCO2were more susceptible to acute thermal stress; however, within each larval treatment, progeny from outside-conditioned mothers had a 0.4°C higher lethal temperature (LT50). Our results indicate that heterogeneity in abiotic factors associated with kelp can have transgenerational effects in the field, and interactions between factors, including temperature and pH, will impact purple urchins as local variability associated with marine heatwaves and upwelling evolves with climate change.more » « less
- 
            Abstract As part of a project focused on the coastal fisheries of Isla Natividad, an island on the Pacific coast of Baja California, Mexico, we conducted a 2‐1/2 year study of flows at two sites within the island's kelp forests. At one site (Punta Prieta), currents are tidal, whereas at the other site (Morro Prieto), currents are weaker and may be more strongly influenced by wind forcing. Satellite estimates of the biomass of the giant kelp (Macrocystis pyrifera) for this period varied between 0 (no kelp) and 3 kg/m2(dense kelp forest), including a period in which kelp entirely was absent as a result of the 2014–2015 “Warm Blob” in the Eastern Pacific. During this natural “deforestation experiment”, alongshore velocities at both sites when kelp was present were substantially weaker than when kelp was absent, with low‐frequency alongshore currents attenuated more than higher frequency ones, behavior that was the same at both sites despite differences in forcing. The attenuation of cross‐shore flows by kelp was less than alongshore flows; thus, residence times for water inside the kelp forest, which are primarily determined by cross‐shore velocities, were only weakly affected by the presence or absence of kelp. The flow changes we observed in response to changes in kelp density are important to the biogeochemical functioning of the kelp forest in that slower flows imply longer residence times, and, are also ecologically relevant in that reduced tidal excursions may lead to more localized recruitment of planktonic larvae.more » « less
- 
            Abstract Giant kelp (Macrocystis pyrifera) forests are common along the California coast. Attached on the rocky bottom at depths of approximately 5–25 m, the kelp, when mature, spans the water column and develops dense, buoyant canopies that interact with waves and currents. We present two novel results based on observations of surface gravity waves in a kelp forest in Point Loma, California. First, we report short wave (1–3 s) attenuation in kelp, quantified by an exponential decay coefficient —comparable to the dampening effect of sea ice. Second, we identify seasonal and tidal changes in attenuation, peaking mid‐summer with maximum kelp cover, and during low tide when a greater proportion of the fronds are at the surface. Thus, the naturally occurring surface canopies of kelp forests can act as temporally varying, high‐frequency filters of wave energy.more » « less
- 
            Upwelling provides high amounts of nutrients that support primary production in coastal habitats, including giant kelp Macrocystis pyrifera forests. Growth and recruitment of kelp forests are controlled by environmental conditions, including temperature, nutrient availability, and storms, as well as biotic interactions. However, our understanding of juvenile persistence in the field is extremely limited, particularly the effects of grazing on the survival of early kelp stages and how environmental variability associated with upwelling dynamics may modulate grazing effects. We quantified herbivore impacts on juvenile M. pyrifera by deploying thirteen 24 h caging experiments approximately every 2 wk throughout the upwelling season in a giant kelp forest in Monterey Bay, CA, USA. Experiments spanned a range of natural environmental variation in oxygen, pH, and temperature, conditions known to affect grazer physiology and that are projected to become more extreme under global climate change. Overall, the herbivore community had a large effect on kelp survival, with 68.5% of juvenile kelp removed on average across experiments. Grazing increased throughout the season, which was most strongly correlated with decreasing monthly oxygen variance and weakly correlated with decreasing monthly pH variance and increasing temperature. This suggests that large swings in oxygen during peak kelp recruitment in spring may provide a temporal refuge from grazing, allowing kelp to reach larger sizes by late summer and fall when upwelling has relaxed. This study highlights the potential of current environmental variability, and its predicted increase under future scenarios, to mediate species interactions and habitat persistence.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    