skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Co-Evolution of Communication and System Performance in Engineering Systems Design: A Stochastic Network-Behavior Dynamics Model
The socio-technical perspective on engineering system design emphasizes the mutual dynamics between interdisciplinary interactions and system design outcomes. How different disciplines interact with each other depends on technical factors such as design interdependence and system performance. On the other hand, the design outcomes are influenced by social factors such as the frequency of interactions and their distribution. Understanding this co-evolution can lead to not only better behavioral insights, but also efficient communication pathways. In this context, we investigate how to quantify the temporal influences of social and technical factors on interdisciplinary interactions and their influence on system performance. We present a stochastic network-behavior dynamics model that quantifies the design interdependence, discipline-specific interaction decisions, the evolution of system performance, as well as their mutual dynamics. We employ two datasets, one of student subjects designing an automotive engine and the other of NASA engineers designing a spacecraft. Then, we apply statistical Bayesian inference to estimate model parameters and compare insights across the two datasets. The results indicate that design interdependence and social network statistics both have strong positive effects on interdisciplinary interactions for the expert and student subjects alike. For the student subjects, an additional modulating effect of system performance on interactions is observed. Inversely, the total number of interactions, irrespective of their discipline-wise distribution, has a weak but statistically significant positive effect on system performance in both cases. However, excessive interactions mirrored with design interdependence and inflexible design space exploration reduce system performance. These insights support the case for open organizational boundaries as a way for increasing interactions and improving system performance.  more » « less
Award ID(s):
1841192 1841062
PAR ID:
10311053
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This innovative practice work in progress paper describes an interdisciplinary course, “Industry 4.0 Robotics,” aimed at fostering deep learning and innovation in students across Manufacturing, Robotics, Computer Science, Software Engineering, Networking, Cybersecurity, and Technology Management. The course, jointly taught by faculty from different domains, emphasizes interdisciplinary connections in Industry 4.0 (IN4.0) Robotics through a combination of lectures, real-world insights from industry guest speakers, and hands-on interdisciplinary project-based learning. The contribution of this work lies in its innovative approach that combines proven best practices in education, inspiring deep learning, and an appreciation of interdisciplinary teamwork. The course design builds upon education research on the benefits of leveraging student creativity and requirements engineering practices as learning tools that allow students to develop a deeper understanding. While the benefits of these practices, commonly cited for developing enhanced problem-solving and cognitive flexibility skills, are becoming well understood in many individual disciplines, far less has been published on best practices for achieving this in interdisciplinary thinking. This course design explores this through using hybrid experiential problem based learning and project based learning for students to develop an understanding of interdisciplinary challenges and opportunities. While the benefits of individual educational practices have been studied within specific disciplines, this work extends the understanding of these practices when applied to interdisciplinary challenges, such as those encountered in Industry 4.0 robotics. The course design aims to bridge the gap between the technical aspects of individual disciplines and the social dimensions inherent in interdisciplinary work. This work in progress seeks to share early results showcasing the benefits of interdisciplinary teamwork and problem-solving. By articulating observations of commonalities and differences with prior work within individual disciplines, the paper aims to highlight the unique advantages of this interdisciplinary learning experience, offering insights into the potential impact on student learning. The chosen approach stems from the anticipation of future challenges increasingly necessitating interdisciplinary solutions. The goal of this work is to understand how best practices from individual disciplines can be effectively incorporated into interdisciplinary courses, maximizing student learning, and uncovering unique learning outcomes resulting from this innovative approach. The course design intentionally bridges the gap between the technical aspects of individual disciplines and the social dimensions inherent in interdisciplinary work, to encourage effective communication and collaboration within mixed student teams. While this remains a work in progress, initial observations reveal a heightened interdisciplinary curiosity among students, driving deep learning as they explore the interconnectedness of their own discipline with others within their teams. This curiosity propels self-led exploration and understanding of how their expertise intersects with diverse knowledge areas, creating opportunities for innovative solutions at these disciplinary intersections. This work contributes to the broader landscape of engineering and computing education by offering insights into the practical application of interdisciplinary learning in preparing students for the complex challenges of Industry 4.0. 
    more » « less
  2. In this paper, we present the Systems Engineering Initiative for Student Success (SEISS) framework we are developing for enabling educational organizations to scan, evaluate and transform their operations to achieve their diversity, equity, and inclusion goals in student recruitment, retention, and graduation. The underlying structure and logic in our SEISS framework is that an organization such as a college of engineering is a sociotechnical system (STS) consisting of a social subsystem and a technical subsystem. The social subsystem consists of people, their roles and is a model of who talks to whom about what. The technical subsystem consists of all the activities, programs, policies, and operations that help the organization achieve its goals. In a sociotechnical system, the social and technical subsystems are interdependent in their functioning, and they must be jointly optimized from an organizational design perspective. Our SEISS framework which views a college or a similar organizational unit as a sociotechnical system lends the organizational designer a unique systems lens with which to view, analyze and design the operations and organize the capacities and resources in the college. The systems lens views an organizational unit, its sub-systems, components, and its corresponding capacities not in isolation, but as entities that interact with each other. With support from an NSF IUSE grant, we have been developing the SEISS framework and have piloted the framework in a predominantly white college of engineering to identify existing and potential technical and social system capacities for underrepresented minority (URM) students to succeed in the college. Preliminary results from our qualitative analyses of URM student interviews reveal the utility of the SEISS framework and the STS lens in unearthing the barriers and enablers for these students in the social and technical subsystems in the college. We also model the interactions between the social and technical subsystem elements in the SEISS framework, revealing latent opportunities for leveraging the connections between the social and technical subsystem capacities and resources. 
    more » « less
  3. The overall objective of this project funded by the NSF-IUSE program is to employ a sociotechnical systems lens and framework and identify and evaluate organization-wide capacities and change catalysts in a predominantly white institution's college of engineering. The college of engineering is viewed as a sociotechnical organization with social and technical subsystems. The social subsystem models who talks to whom about what. The technical subsystem models the main activities and programs in the organization. Our project aims to: (1) assess the technical system’s capacity to support recruitment and retention through a technical system analysis; (2) assess the social system’s capacity to support recruitment and retention through a social system analysis; and (3) generate systemwide catalysts for URM student success. We conducted semi-structured hour-long interviews with 38 stakeholders including students, faculty, administrators and staff from various departments and student organizations within and outside the college. We are qualitatively analyzing the interview data to identify technical and social system barriers and enablers. Data analysis is ongoing, but our preliminary findings and insights are as follows: (1) social system barriers for URM students were interactions with peers in classroom environment (leading to a sense of isolation and a lack of belonging), interactions with faculty and staff especially in relating to their needs and being empathetic, and familial concerns and being able to support their family financially. (2) interactions with their friends was the top social system enabler for URM students. Family also provided them comfort and solace while attending to the rigors of college. They also felt that living at home would alleviate some of the financial burdens they faced. (3) the lack in numbers (and hence the lack of diversity and identity), curricular and instructional methods, and high school preparation were cited as the most important technical system barriers these students faced. (4) students identified as technical system enablers the professional development opportunities they had, their participation in students organizations, particularly in identity-based organizations such as NSBE, SHPE and WISE, and how that helped them forge new contacts and provided emotional support during their stay here. (5) there is recognition among the administrators and the staff working with URM students that diversity is important in the student body and that the mission of enabling URM student success is important, although the mission itself with respect to URM students is somewhat poorly defined and understood. 
    more » « less
  4. Voice-based social media platforms that enable attendees to have real-time, ephemeral interactions with each other—such as X-Spaces, Discord, and Clubhouse—have seen considerable growth in recent years. While prior research on these spaces has predominantly focused on moderating harms, our work seeks to understand emergent practices employed by hosts to proactively shape their discussion space— focusing on the facilitation aspect of moderation duties. Drawing on facilitation strategies, we study these practices through three comprehensive studies using mixed-methods: survey of social-audio users, co-design interviews, and analyzing training sessions for hosts. Our findings reveal insights into the issues faced by hosts and attendees, current facilitation practices, opinions on technological solutions, and factors that could be responsible for some of the identified issues such as the available training for hosts. We found that hosts themselves are often significant sources of issues due to practices such as focusing more on self-promotion than facilitating discussions. In addition, host training sessions seem to encourage behaviors that contribute to the negative perception of hosts. We draw on outcomes from co-design interviews to guide the design of future tools to support hosts in facilitating social-audio spaces. Our findings provide insights that could help create a more positive experience for both hosts and attendees. 
    more » « less
  5. Autistic students often struggle to engage with peers in integrated education; however, research has largely focused on individual characteristics rather than the interpersonal and environmental factors affecting peer engagement. This mixed-methods study examined longitudinal peer interactions over a school year among 17 adolescents (seven were autistic) in an inclusive school club. The quantitative phase investigated participants’ social behavior rates to identify sessions where each student demonstrated high and low peer engagement compared with their average participation levels. The qualitative phase compared social interactions and contexts between sessions of high and low peer engagement, revealing four themes regarding contextual supports and barriers to autistic peer engagement: (1) peer engagement is a participatory process where a student and their peer(s) navigate mutual understanding, shaped by both student and peer social characteristics, openness, and involvement; (2) student–peer synchronicity, such as shared interests or compatibility of social styles, was essential to autistic peer engagement; (3) peer engagement can be supported by activities facilitating joint engagement and exploration of mutual interests; (4) classroom interventions emphasizing strengths can support peer engagement, while normative behavioral standards without peer education on individual differences and diversity can perpetuate peers’ negative perceptions of autistic difficulties. Lay abstractPeer engagement is essential but often challenging for autistic students in integrated education, especially for adolescents. Although peer engagement is bidirectional and context-dependent, research has largely focused on individual characteristics rather than the interpersonal and environmental factors affecting peer engagement. This mixed-methods study examined peer interactions over a school year among 17 adolescents (seven were autistic) in an inclusive school club at a public middle school in the Northeastern United States. The study began with a quantitative phase identifying sessions in which each student was socially engaged with peers more or less often than usual for them. We then qualitatively compared the social interactions and contexts between sessions where each participant experienced high and low peer engagement. Thematic analysis revealed four themes regarding contextual supports and barriers to autistic peer engagement: (1) peer engagement is a participatory process where a student and their peer(s) navigate mutual understanding, shaped by both student and peer social characteristics, openness, and involvement; (2) student–peer synchronicity, such as shared interests or compatibility of social styles, was essential to autistic peer engagement; (3) peer engagement can be supported by activities facilitating joint engagement and exploration of mutual interests; (4) classroom interventions emphasizing strengths can support peer engagement, while normative behavioral standards without peer education on individual differences and diversity can perpetuate peers’ negative perceptions of autistic difficulties. The findings have implications for better inclusive practice to support autistic social participation by modifying the peer environments, activities, and classroom interventions. 
    more » « less