skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Social convergence of gut microbiomes in vampire bats
The ‘social microbiome’ can fundamentally shape the costs and benefits of group-living, but understanding social transmission of microbes in free-living animals is challenging due to confounding effects of kinship and shared environments (e.g. highly associated individuals often share the same spaces, food and water). Here, we report evidence for convergence towards a social microbiome among introduced common vampire bats, Desmodus rotundus , a highly social species in which adults feed only on blood, and engage in both mouth-to-body allogrooming and mouth-to-mouth regurgitated food sharing. Shotgun sequencing of samples from six zoos in the USA, 15 wild-caught bats from a colony in Belize and 31 bats from three colonies in Panama showed that faecal microbiomes were more similar within colonies than between colonies. To assess microbial transmission, we created an experimentally merged group of the Panama bats from the three distant sites by housing these bats together for four months. In this merged colony, we found evidence that dyadic gut microbiome similarity increased with both clustering and oral contact, leading to microbiome convergence among introduced bats. Our findings demonstrate that social interactions shape microbiome similarity even when controlling for past social history, kinship, environment and diet.  more » « less
Award ID(s):
2015928
PAR ID:
10311068
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biology Letters
Volume:
17
Issue:
11
ISSN:
1744-957X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When group-living animals develop individualized social relationships, they often regulate cooperation and conflict through a dominance hierarchy. Female common vampire bats have been an experimental system for studying cooperative relationships, yet surprisingly little is known about female conflict. Here, we recorded the outcomes of 1023 competitive interactions over food provided ad libitum in a captive colony of 33 vampire bats (24 adult females and their young). We found a weakly linear dominance hierarchy using three common metrics (Landau's h ’ measure of linearity, triangle transitivity and directional consistency). However, patterns of female dominance were less structured than in many other group-living mammals. Female social rank was not clearly predicted by body size, age, nor reproductive status, and competitive interactions were not correlated with kinship, grooming nor food sharing. We therefore found no evidence that females groomed or shared food up a hierarchy or that differences in rank explained asymmetries in grooming or food sharing. A possible explanation for such apparently egalitarian relationships among female vampire bats is the scale of competition. Female vampire bats that are frequent roostmates might not often directly compete for food in the wild. 
    more » « less
  2. All foraging animals face a trade-off: how much time should they invest in exploitation of known resources versus exploration to discover new resources? For group-living central place foragers, this balance is challenging. Due to the nature of their movement patterns, exploration and exploitation are often mutually exclusive, while the availability of social information may discourage individuals from exploring. To examine these trade-offs, we GPS-tracked groups of greater spear-nosed bats (Phyllostomus hastatus) from three colonies on Isla Colón, Panamá. During the dry season, when these omnivores forage on the nectar of unpredictable balsa flowers, bats consistently travelled long distances to remote, colony-specific foraging areas, bypassing flowering trees closer to their roosts. They continued using these areas in the wet season, when feeding on a diverse, presumably ubiquitous diet, but also visited other, similarly distant foraging areas. Foraging areas were shared within but not always between colonies. Our longitudinal dataset suggests that bats from each colony invest in long-distance commutes to socially learned shared foraging areas, bypassing other available food patches. Rather than exploring nearby resources, these bats exploit colony-specific foraging locations that appear to be culturally transmitted. These results give insight into how social animals might diverge from optimal foraging. 
    more » « less
  3. Hobaiter, Catherine (Ed.)
    Stable social bonds in group-living animals can provide greater access to food. A striking example is that female vampire bats often regurgitate blood to socially bonded kin and nonkin that failed in their nightly hunt. Food-sharing relationships form via preferred associations and social grooming within roosts. However, it remains unclear whether these cooperative relationships extend beyond the roost. To evaluate if long-term cooperative relationships in vampire bats play a role in foraging, we tested if foraging encounters measured by proximity sensors could be explained by wild roosting proximity, kinship, or rates of co-feeding, social grooming, and food sharing during 21 months in captivity. We assessed evidence for 6 hypothetical scenarios of social foraging, ranging from individual to collective hunting. We found that closely bonded female vampire bats departed their roost separately, but often reunited far outside the roost. Repeating foraging encounters were predicted by within-roost association and histories of cooperation in captivity, even when accounting for kinship. Foraging bats demonstrated both affiliative and competitive interactions with different social calls linked to each interaction type. We suggest that social foraging could have implications for social evolution if “local” within-roost cooperation and “global” outside-roost competition enhances fitness interdependence between frequent roostmates. 
    more » « less
  4. Regurgitated food sharing in vampire bats is a cooperative behavior that has garnered scientific interest as an example of reciprocal helping among kin and non-kin. The amount of food given is estimated via the duration of mouth-licking. However, a growing body of evidence across other animal taxa, especially social insects, shows that mouth-to-mouth material transfer can serve many functions besides food sharing. In this review, we asked whether and to what extent mouth-licking in the common vampire bat (Desmodus rotundus) could be explained by functions other than regurgitated food sharing. We first review the evidence, including new analyses of published data, that food sharing occurs during mouth-licking bouts in vampire bats. We then review interpretations of mouth-licking in other mammal species and assess the likelihood that various hypothetical functions suggested in other species could occur in vampire bats. We conclude that the primary function of prolonged bouts of mouth-licking in vampire bats is sharing of ingested blood, but that microbial sharing is another likely benefit, and that short bouts of mouth-licking also function as social signals of begging or offering of food. Future work on this behavior should keep alternative explanations in mind when interpreting observations. 
    more » « less
  5. For social animals, the genotypes of group members affect the social environment, and thus individual behavior, often indirectly. We used genome-wide association studies (GWAS) to determine the influence of individual vs. group genotypes on aggression in honey bees. Aggression in honey bees arises from the coordinated actions of colony members, primarily nonreproductive “soldier” bees, and thus, experiences evolutionary selection at the colony level. Here, we show that individual behavior is influenced by colony environment, which in turn, is shaped by allele frequency within colonies. Using a population with a range of aggression, we sequenced individual whole genomes and looked for genotype–behavior associations within colonies in a common environment. There were no significant correlations between individual aggression and specific alleles. By contrast, we found strong correlations between colony aggression and the frequencies of specific alleles within colonies, despite a small number of colonies. Associations at the colony level were highly significant and were very similar among both soldiers and foragers, but they covaried with one another. One strongly significant association peak, containing an ortholog of the Drosophila sensory gene dpr4 on linkage group (chromosome) 7, showed strong signals of both selection and admixture during the evolution of gentleness in a honey bee population. We thus found links between colony genetics and group behavior and also, molecular evidence for group-level selection, acting at the colony level. We conclude that group genetics dominates individual genetics in determining the fatal decision of honey bees to sting. 
    more » « less