skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2015928

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In many group‐living animals, survival and reproductive success depend on the formation of long‐term social bonds, yet it remains largely unclear why particular pairs of groupmates form social bonds and not others. Can social bond formation be reliably predicted from each individual's immediately observable traits and behaviors at first encounter? Or is social bond formation hard to predict due to the impacts of shifting social preferences on social network dynamics? To begin to address these questions, we asked how well long‐term cooperative relationships among vampire bats were predicted by how they interacted during their first encounter as introduced strangers. In Study 1, we found that the first 6 h of observed interactions among unfamiliar bats co‐housed in small cages did not clearly predict the formation of allogrooming or food‐sharing relationships over the next 10 months. In Study 2, we found that biologger‐tracked first contacts during the first 4–24 h together in a flight cage did not strongly predict allogrooming rates over the next 4 months. These results corroborate past evidence that social bonding in vampire bats is not reducible to the individual traits or behaviors observed at first encounter. Put simply, first impressions are overshadowed by future social interactions. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Abstract Reciprocity and pseudo‐reciprocity are two important models for the evolution of cooperation and often considered alternative hypotheses. Reciprocity is typically defined as a scenario where help givencauseshelp received: cooperation is stabilized because each actor's cooperative investments are conditional on the cooperative returns from the receiver. Pseudo‐reciprocity is a scenario where helpenablesbyproduct returns: cooperation is inherently stable because the actor's cooperative investments yield byproduct returns from the receiver's self‐serving behavior. These models are strict alternatives only if reciprocity is defined by the restrictive assumption of zerofitness interdependence, meaning that the helper has no “stake” in the receiver's fitness. Reciprocity and interdependence are, however, not mutually exclusive when helping can increase both reciprocal help and byproduct returns. For instance, helping partners survive can simultaneously increase their willingness to reciprocate, their ability to reciprocate, and byproduct benefits of their existence. Interdependence can “pave the road” to reciprocal helping, and partners who reciprocate help can also become interdependent. However, larger cooperative investments can increase the need for responsiveness to partner returns. Therefore, most long‐term cooperative relationships involve both responsiveness and interdependence. Categorizing these relationships as “reciprocity” can be viewed as ignoring interdependence, but calling them ‘pseudo‐reciprocity’ is confusing because stability also comes from the cooperative investments being conditional on returns. Rather than conceptualizing cooperation intodiscrete categories, it is more insightful to imagine a coordinate system with responsiveness and interdependence ascontinuous dimensions. One can ask: To what degree is helping behavior responsive to the partner's behavior? And to what degree does the helper inherently benefit from the receiver's survival or reproduction? The amounts of responsiveness and interdependence will often be hard to estimate, but both are unlikely to be zero. Identifying their relative importance, and how that changes over time, would greatly clarify the nature of cooperative relationships. 
    more » « less
  3. Abstract To forage efficiently, animals should selectively attend to and remember the cues of food that best predict future meals. One hypothesis is that animals with different foraging strategies should vary in their reliance on spatial versus feature cues. Specifically, animals that store food in dispersed caches or that feed on spatially stable food, such as fruits or flowers, should be relatively biased towards learning a meal’s location, whereas predators that hunt mobile prey should instead be relatively biased towards learning feature cues such as odor or sound. Several authors have predicted that nectar-feeding and fruit-feeding bats would rely relatively more on spatial cues, whereas closely related predatory bats would rely more on feature cues, yet no experiment has compared these two foraging strategies under the same conditions. To test this hypothesis, we compared learning in the frugivorous bat, Artibeus jamaicensis, and the predatory bat, Lophostoma silvicolum, which hunts katydids using acoustic cues. We trained bats to find food paired with a unique and novel odor, sound, and location. To assess which cues each bat had learned, we then dissociated these cues to create conflicting information. Rather than finding that the frugivore and predator clearly differ in their relative reliance on spatial versus feature cues, we found that both species used spatial cues over sounds or odors in subsequent foraging decisions. We interpret these results alongside past findings on how foraging animals use spatial cues versus feature cues, and explore why spatial cues may be fundamentally more rich, salient, or memorable. 
    more » « less
  4. Abstract The function of cooperative traits can change over time. For example, helping behaviors that originally evolved by kin selection can later yield direct fitness benefits and be stabilized by partner choice. In such cases, there may be multiple interacting factors that drive cooperation. Here, I review evidence that food sharing in vampire bats evolved as form of extended maternal care that was co‐opted to yield reciprocal benefits, and that such reciprocal relationships may have led to investment strategies that balance the trade‐offs between greater quality and quantity of cooperative relationships. 
    more » « less
  5. Social structure can emerge fromhierarchically embedded scales of movement, where movement at one scale is constrained within a larger scale (e.g. among branches, trees, forests). In most studies of animal social networks, some scales of movement are not observed, and the relative importance of the observed scales of movement is unclear. Here, we asked: how does individual variation in movement, at multiple nested spatial scales, influence each individual's social connectedness? Using existing data from common vampire bats (Desmodus rotundus), we created an agent-based model of how three nested scales of movement—among roosts, clusters and grooming partners—each influence a bat's grooming network centrality. In each of 10 simulations, virtual bats lacking social and spatial preferences moved at each scale at empirically derived rates that were either fixed or individually variable and either independent or correlated across scales. We found that numbers of partners groomed per bat were driven more by within-roost movements than by roost switching, highlighting that co-roosting networks do not fully capture bat social structure. Simulations revealed how individual variation in movement at nested spatial scales can cause false discovery and misidentification of preferred social relationships. Our model provides several insights into how nonsocial factors shape social networks. 
    more » « less
  6. There is increasing awareness that data science and computational thinking are critical skills for undergraduates to develop but these can be difficult to integrate into undergraduate Biology classes. In this module, we describe how we have used a system for learning the programming language R that focuses on building students? skills and confidence in data exploration, management, and visualization. This activity pairs a hands-on virtual experiment where students simulate animal movements and social interactions to provide a friendly introduction to basic data science for biologists. During the activity, students play the ?Bat Game?, an online game which students access via an internet browser. Each student controls the movement decisions of one bat within a social group. The bats must search for cows they can bite to get a meal of blood. Students take the roles of bats in a series of foraging tasks. Students must follow ?rules? and attempt to match their overall actions to those of their group members under different scenarios. The game platform collects all the locations of all bats in the game. After playing the game, students export the data they just created and analyze it to learn how to detect known patterns through basic summaries and plotting in R. All analyses and programming skills are presented in one cohesive R Markdown file, where students can read about the goals of each coding chunk, can run each chunk, and then answer questions about the biology of the social system as well as basic questions about the code used in the analyses. This approach decouples coding from statistics, assumes no prior knowledge, and uses a charismatic species to incentivize student participation. This module can be used in many courses including lab sections of large-enrollment introductory biology courses as well as smaller upper-level courses 
    more » « less
  7. Blood-feeding (sanguivory) has evolved more than two dozen times among birds, fishes, insects, arachnids, molluscs, crustaceans, and annelids; however, among mammals, it is restricted to the vampire bats. Here, the authors revisit the question of how it evolved in that group. Evidence to date suggests that the ancestors of phyllostomids were insectivorous, and that carnivory, omnivory, and nectarivory evolved among phyllostomids after vampire bats diverged. Frugivory likely also evolved after vampire bats diverged, but the phylogeny is ambiguous on that point. However, vampire bats lack any genetic evidence of a frugivorous past, and the behavioural progression from frugivory to sanguivory is difficult to envision. Thus, the most parsimonious scenario is that sanguivory evolved in an insectivorous ancestor to vampire bats via ectoparasite-eating, wound-feeding, or some combination of the two—all feeding habits found among blood-feeding birds today. Comparing vampire bats with other sanguivores, the authors find several remarkable examples of convergence. Further, it was found that blood-feeding has been ca. 50 times more likely to evolve in a vertebrate lineage than in an invertebrate one. The authors hypothesize that this difference exists because vertebrates are more likely than invertebrates to have the biochemical necessities required to assimilate the components of vertebrate blood. 
    more » « less
  8. Rabies virus (RABV) transmitted by the common vampire bat ( Desmodus rotundus ) poses a threat to agricultural development and public health throughout the Neotropics. The ecology and evolution of rabies host–pathogen dynamics are influenced by two infection-induced behavioural changes. RABV-infected hosts often exhibit increased aggression which facilitates transmission, and rabies also leads to reduced activity and paralysis prior to death. Although several studies document rabies-induced behavioural changes in rodents and other dead-end hosts, surprisingly few studies have measured these changes in vampire bats, the key natural reservoir throughout Latin America. Taking advantage of an experiment designed to test an oral rabies vaccine in captive male vampire bats, we quantify for the first time, to our knowledge, how rabies affects allogrooming and aggressive behaviours in this species. Compared to non-rabid vampire bats, rabid individuals reduced their allogrooming prior to death, but we did not detect increases in aggression among bats. To put our results in context, we review what is known and what remains unclear about behavioural changes of rabid vampire bats (resumen en español, electronic supplementary material, S1). 
    more » « less