skip to main content


Title: AdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy
This paper aims to improve robots’ versatility and adaptability by allowing them to use a large variety of end- effector tools and quickly adapt to new tools. We propose AdaGrasp, a method to learn a single grasping policy that generalizes to novel grippers. By training on a large collection of grippers, our algorithm is able to acquire generalizable knowledge of how different grippers should be used in various tasks. Given a visual observation of the scene and the gripper, AdaGrasp infers the possible grasp poses and their grasp scores by computing the cross convolution between the shape encodings of the gripper and scene. Intuitively, this cross convolution operation can be considered as an efficient way of exhaustively matching the scene geometry with gripper geometry under different grasp poses (i.e., translations and orientations), where a good "match" of 3D geometry will lead to a successful grasp. We validate our methods in both simulation and real- world environments. Our experiment shows that AdaGrasp significantly outperforms the existing multi-gripper grasping policy method, especially when handling cluttered environments and partial observations. Code and Data are available at https://adagrasp.cs.columbia.edu.  more » « less
Award ID(s):
2037101
NSF-PAR ID:
10311129
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Robotics and Automation (ICRA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soft robotics has yielded numerous examples of soft grippers that utilize compliance to achieve impressive grasping performances with great simplicity, adaptability, and robustness. Designing soft grippers with substantial grasping strength while remaining compliant and gentle is one of the most important challenges in this field. In this paper, we present a light-weight, vacuum-driven soft robotic gripper made of an origami “magic-ball” and a flexible thin membrane. We also describe the design and fabrication method to rapidly manufacture the gripper with different combinations of low- cost materials for diverse applications. Grasping experiments demonstrate that our gripper can lift a large variety of objects, including delicate foods, heavy bottles, and other miscellaneous items. The grasp force on 3D-printed objects is also characterized through mechanical load tests. The results reveal that our soft gripper can produce significant grasp force on various shapes using negative pneumatic pressure (vacuum). This new gripper holds the potential for many practical applications that require safe, strong, and simple grasping. 
    more » « less
  2. Abstract Soft robotic grippers can gently grasp and maneuver objects. However, they are difficult to model and control due to their highly deformable fingers and complex integration with robotic systems. This paper investigates the design requirements as well as the grasping capabilities and performance of a soft gripper system based on fluidic prestressed composite (FPC) fingers. An analytical model is constructed as follows: each finger is modeled using the chained composite model (CCM); strain energy and work done by pressure and loads are computed using polynomials with unknown coefficients; net energy is minimized using the Rayleigh–Ritz method to calculate the deflected equilibrium shapes of the finger as a function of pressure and loads; and coordinate transformation and gripper geometries are combined to analyze the grasping performance. The effects of prestrain, integration angle, and finger overlap on the grasping performance are examined through a parametric study. We also analyze gripping performance for cuboidal and spherical objects and show how the grasping force can be controlled by varying fluidic pressure. The quasi-static responses of fabricated actuators are measured under pressures and loads. It is shown that the actuators’ modeled responses agree with the experimental results. This work provides a framework for the theoretical analysis of soft robotic grippers and the methods presented can be extended to model grippers with different types of actuation. 
    more » « less
  3. Robotic grasping can enable mobile vehicles to physically interact with the environment for delivery, repositioning, or landing. However, the requirements for grippers on mobile vehicles differ substantially from those used for conventional manipulation. Specifically, grippers for dynamic mobile robots should be capable of rapid activation, high force density, low power consumption, and minimal computation. In this work, we present a biologically-inspired robotic gripper designed specifically for mobile platforms. This design exploits a bistable shell to achieve “reflexive” activation based on contact with the environment. The mechanism can close its grasp within 0. 12s without any sensing or control. Electrical input power is not required for grasping or holding load. The reflexive gripper utilizes a novel pneumatic design to open its grasp with low power, and the gripper can carry slung loads up to 28 times its weight. This new mechanism, including the kinematics, static behavior, control structure, and fabrication, is described in detail. A proof of concept prototype is designed, built, and tested. Experimental results are used to characterize performance and demonstrate the potential of these methods. 
    more » « less
  4. This work proposes a novel generative design tool for passive grippers---robot end effectors that have no additional actuation and instead leverage the existing degrees of freedom in a robotic arm to perform grasping tasks. Passive grippers are used because they offer interesting trade-offs between cost and capabilities. However, existing designs are limited in the types of shapes that can be grasped. This work proposes to use rapid-manufacturing and design optimization to expand the space of shapes that can be passively grasped. Our novel generative design algorithm takes in an object and its positioning with respect to a robotic arm and generates a 3D printable passive gripper that can stably pick the object up. To achieve this, we address the key challenge of jointly optimizing the shape and the insert trajectory to ensure a passively stable grasp. We evaluate our method on a testing suite of 22 objects (23 experiments), all of which were evaluated with physical experiments to bridge the virtual-to-real gap. Code and data are at https://homes.cs.washington.edu/~milink/passive-gripper/

     
    more » « less
  5. Abstract

    Achieving multicapability in a single soft gripper for handling ultrasoft, ultrathin, and ultraheavy objects is challenging due to the tradeoff between compliance, strength, and precision. Here, combining experiments, theory, and simulation, we report utilizing angle-programmed tendril-like grasping trajectories for an ultragentle yet ultrastrong and ultraprecise gripper. The single gripper can delicately grasp fragile liquids with minimal contact pressure (0.05 kPa), lift objects 16,000 times its own weight, and precisely grasp ultrathin, flexible objects like 4-μm-thick sheets and 2-μm-diameter microfibers on flat surfaces, all with a high success rate. Its scalable and material-independent design allows for biodegradable noninvasive grippers made from natural leaves. Explicitly controlled trajectories facilitate its integration with robotic arms and prostheses for challenging tasks, including picking grapes, opening zippers, folding clothes, and turning pages. This work showcases soft grippers excelling in extreme scenarios with potential applications in agriculture, food processing, prosthesis, biomedicine, minimally invasive surgeries, and deep-sea exploration.

     
    more » « less