skip to main content

Title: Fit2Form: 3D Generative Model for Robot Gripper Form Design
The 3D shape of a robot’s end-effector plays a critical role in determining it’s functionality and overall performance. Many of today’s industrial applications rely on highly customized gripper design for a given task to ensure the system’s robustness and accuracy. However, the process of manual hardware design is both costly and time-consuming, and the quality of the design is also dependent on the engineer’s experience and domain expertise, which can easily be out-dated or inaccurate. The goal of this paper is to use machine learning algorithms to automate this design process and generate task-specific gripper designs that satisfy a set of pre-defined design objectives. We model the design objectives by training a Fitness network to predict their values for a pair of gripper fingers and a grasp object. This Fitness network is then used to provide training supervision to a 3D Generative network that produces a pair of 3D finger geometries for the target grasp object. Our experiments demonstrate that the proposed 3D generative design framework generates parallel jaw gripper finger shapes that achieve more stable and robust grasps as compared to other general-purpose and task-specific gripper design algorithms.
Authors:
; ;
Award ID(s):
2037101
Publication Date:
NSF-PAR ID:
10311135
Journal Name:
Proceedings of the 2020 Conference on Robot Learning
Sponsoring Org:
National Science Foundation
More Like this
  1. Vacuum-based end effectors are widely used in in- dustry and are often preferred over parallel-jaw and multifinger grippers due to their ability to lift objects with a single point of contact. Suction grasp planners often target planar surfaces on point clouds near the estimated centroid of an object. In this paper, we propose a compliant suction contact model that computes the quality of the seal between the suction cup and local target surface and a measure of the ability of the suction grasp to resist an external gravity wrench. To characterize grasps, we estimate robustness to perturbations in end-effector andmore »object pose, material properties, and external wrenches. We analyze grasps across 1,500 3D object models to generate Dex- Net 3.0, a dataset of 2.8 million point clouds, suction grasps, and grasp robustness labels. We use Dex-Net 3.0 to train a Grasp Quality Convolutional Neural Network (GQ-CNN) to classify robust suction targets in point clouds containing a single object. We evaluate the resulting system in 350 physical trials on an ABB YuMi fitted with a pneumatic suction gripper. When eval- uated on novel objects that we categorize as Basic (prismatic or cylindrical), Typical (more complex geometry), and Adversarial (with few available suction-grasp points) Dex-Net 3.0 achieves success rates of 98%, 82%, and 58% respectively, improving to 81% in the latter case when the training set includes only adversarial objects. Code, datasets, and supplemental material can be found at http://berkeleyautomation.github.io/dex-net.« less
  2. Recent results suggest that it is possible to grasp a variety of singu- lated objects with high precision using Convolutional Neural Networks (CNNs) trained on synthetic data. This paper considers the task of bin picking, where multiple objects are randomly arranged in a heap and the objective is to sequen- tially grasp and transport each into a packing box. We model bin picking with a discrete-time Partially Observable Markov Decision Process that specifies states of the heap, point cloud observations, and rewards. We collect synthetic demon- strations of bin picking from an algorithmic supervisor uses full state information to optimizemore »for the most robust collision-free grasp in a forward simulator based on pybullet to model dynamic object-object interactions and robust wrench space analysis from the Dexterity Network (Dex-Net) to model quasi-static contact be- tween the gripper and object. We learn a policy by fine-tuning a Grasp Quality CNN on Dex-Net 2.1 to classify the supervisor’s actions from a dataset of 10,000 rollouts of the supervisor in the simulator with noise injection. In 2,192 physical trials of bin picking with an ABB YuMi on a dataset of 50 novel objects, we find that the resulting policies can achieve 94% success rate and 96% average preci- sion (very few false positives) on heaps of 5-10 objects and can clear heaps of 10 objects in under three minutes. Datasets, experiments, and supplemental material are available at http://berkeleyautomation.github.io/dex-net.« less
  3. We propose an approach to multi-modal grasp detection that jointly predicts the probabilities that several types of grasps succeed at a given grasp pose. Given a partial point cloud of a scene, the algorithm proposes a set of feasible grasp candidates, then estimates the probabilities that a grasp of each type would succeed at each candidate pose. Predicting grasp success probabilities directly from point clouds makes our approach agnostic to the number and placement of depth sensors at execution time. We evaluate our system both in simulation and on a real robot with a Robotiq 3-Finger Adaptive Gripper and comparemore »our network against several baselines that perform fewer types of grasps. Our experiments show that a system that explicitly models grasp type achieves an object retrieval rate 8.5% higher in a complex cluttered environment than our highest-performing baseline.« less
  4. A robot can now grasp an object more effectively than ever before, but once it has the object what happens next? We show that a mild relaxation of the task and workspace constraints implicit in existing object grasping datasets can cause neural network based grasping algorithms to fail on even a simple block stacking task when executed under more realistic circumstances. To address this, we introduce the JHU CoSTAR Block Stacking Dataset (BSD), where a robot interacts with 5.1 cm colored blocks to complete an order-fulfillment style block stacking task. It contains dynamic scenes and real time-series data in amore »less constrained environment than comparable datasets. There are nearly 12,000 stacking attempts and over 2 million frames of real data. We discuss the ways in which this dataset provides a valuable resource for a broad range of other topics of investigation. We find that hand-designed neural networks that work on prior datasets do not generalize to this task. Thus, to establish a baseline for this dataset, we demonstrate an automated search of neural network based models using a novel multiple-input HyperTree MetaModel, and find a final model which makes reasonable 3D pose predictions for grasping and stacking on our dataset. The CoSTAR BSD, code, and instructions are available at sites.google.com/site/costardataset« less
  5. We present a new weakly supervised learning-based method for generating novel category-specific 3D shapes from unoccluded image collections. Our method is weakly supervised and only requires silhouette annotations from unoccluded, category-specific objects. Our method does not require access to the object's 3D shape, multiple observations per object from different views, intra-image pixel correspondences, or any view annotations. Key to our method is a novel multi-projection generative adversarial network (MP-GAN) that trains a 3D shape generator to be consistent with multiple 2D projections of the 3D shapes, and without direct access to these 3D shapes. This is achieved through multiple discriminatorsmore »that encode the distribution of 2D projections of the 3D shapes seen from a different views. Additionally, to determine the view information for each silhouette image, we also train a view prediction network on visualizations of 3D shapes synthesized by the generator. We iteratively alternate between training the generator and training the view prediction network. We validate our multi-projection GAN on both synthetic and real image datasets. Furthermore, we also show that multi-projection GANs can aid in learning other high-dimensional distributions from lower dimensional training datasets, such as material-class specific spatially varying reflectance properties from images.« less