skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fit2Form: 3D Generative Model for Robot Gripper Form Design
The 3D shape of a robot’s end-effector plays a critical role in determining it’s functionality and overall performance. Many of today’s industrial applications rely on highly customized gripper design for a given task to ensure the system’s robustness and accuracy. However, the process of manual hardware design is both costly and time-consuming, and the quality of the design is also dependent on the engineer’s experience and domain expertise, which can easily be out-dated or inaccurate. The goal of this paper is to use machine learning algorithms to automate this design process and generate task-specific gripper designs that satisfy a set of pre-defined design objectives. We model the design objectives by training a Fitness network to predict their values for a pair of gripper fingers and a grasp object. This Fitness network is then used to provide training supervision to a 3D Generative network that produces a pair of 3D finger geometries for the target grasp object. Our experiments demonstrate that the proposed 3D generative design framework generates parallel jaw gripper finger shapes that achieve more stable and robust grasps as compared to other general-purpose and task-specific gripper design algorithms.  more » « less
Award ID(s):
2037101
PAR ID:
10311135
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2020 Conference on Robot Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work proposes a novel generative design tool for passive grippers---robot end effectors that have no additional actuation and instead leverage the existing degrees of freedom in a robotic arm to perform grasping tasks. Passive grippers are used because they offer interesting trade-offs between cost and capabilities. However, existing designs are limited in the types of shapes that can be grasped. This work proposes to use rapid-manufacturing and design optimization to expand the space of shapes that can be passively grasped. Our novel generative design algorithm takes in an object and its positioning with respect to a robotic arm and generates a 3D printable passive gripper that can stably pick the object up. To achieve this, we address the key challenge of jointly optimizing the shape and the insert trajectory to ensure a passively stable grasp. We evaluate our method on a testing suite of 22 objects (23 experiments), all of which were evaluated with physical experiments to bridge the virtual-to-real gap. Code and data are at https://homes.cs.washington.edu/~milink/passive-gripper/ 
    more » « less
  2. We propose an approach to multi-modal grasp detection that jointly predicts the probabilities that several types of grasps succeed at a given grasp pose. Given a partial point cloud of a scene, the algorithm proposes a set of feasible grasp candidates, then estimates the probabilities that a grasp of each type would succeed at each candidate pose. Predicting grasp success probabilities directly from point clouds makes our approach agnostic to the number and placement of depth sensors at execution time. We evaluate our system both in simulation and on a real robot with a Robotiq 3-Finger Adaptive Gripper and compare our network against several baselines that perform fewer types of grasps. Our experiments show that a system that explicitly models grasp type achieves an object retrieval rate 8.5% higher in a complex cluttered environment than our highest-performing baseline. 
    more » « less
  3. Hasegawa, Yasuhisa (Ed.)
    Advancing robotic grasping and manipulation requires the ability to test algorithms and/or train learning models on large numbers of grasps. Towards the goal of more advanced grasping, we present the Grasp Reset Mechanism (GRM), a fully automated apparatus for conducting large-scale grasping trials. The GRM automates the process of resetting a grasping environment, repeatably placing an object in a fixed location and controllable 1-D orientation. It also collects data and swaps between multiple objects enabling robust dataset collection with no human intervention. We also present a standardized state machine interface for control, which allows for integration of most manipulators with minimal effort. In addition to the physical design and corresponding software, we include a dataset of 1,020 grasps. The grasps were created with a Kinova Gen3 robot arm and Robotiq 2F-85 Adaptive Gripper to enable training of learning models and to demonstrate the capabilities of the GRM. The dataset includes ranges of grasps conducted across four objects and a variety of orientations. Manipulator states, object pose, video, and grasp success data are provided for every trial. 
    more » « less
  4. Jara, C; Borras_Sol, J (Ed.)
    Deep Reinforcement Learning (DRL) has shown its capability to solve the high degrees of freedom in control and the complex interaction with the object in the multi-finger dexterous in-hand manipulation tasks. Current DRL approaches lack behavior constraints during the learning process, leading to aggressive and unstable policies that are insufficient for safety-critical in-hand manipulation tasks. The centralized learning strategy also limits the flexibility to fine-tune each robot finger's behavior. This work proposes the Finger-specific Multi-agent Shadow Critic Consensus (FMSC) method, which models the in-hand manipulation as a multi-agent collaboration task where each finger is an individual agent and trains the policies for the fingers to achieve a consensus across the critic networks through the Information Sharing (IS) across the neighboring agents and finger-specific stable manipulation objectives based on the state-action occupancy measure, a general utility of DRL that is approximated during the learning process. The methods are evaluated in two in-hand manipulation tasks on the Shadow Hand. The results show that FMSC+IS converges faster in training, achieving a comparable success rate and much better manipulation stability than conventional DRL methods. 
    more » « less
  5. Sensing plays a pivotal role in robotic manipulation, dictating the accuracy and versatility with which objects are handled. Vision-based sensing methods often suffer from fabrication complexity and low durability, while approaches that rely on direct measurements on the gripper often have limited resolution and are difficult to scale. Here we present a robotic gripper that is made of two cubic lattices that are sensorized using air channels. the fabrication process. The lattices are printed using a 3D printer, simplifying the fabrication process. The flexibility of this approach offers significant control over sensor and lattice design, while the pressure-based internal sensing provides measurements with minimal disruption to the grasping surface. With only 12 sensors, 6 per lattice, this gripper can estimate an object's weight and location and offer new insights into grasp parameters like friction coefficients and grasp force. 
    more » « less