skip to main content

Title: System design for inferring colony-level pollination activity through miniature bee-mounted sensors
Abstract In digital agriculture, large-scale data acquisition and analysis can improve farm management by allowing growers to constantly monitor the state of a field. Deploying large autonomous robot teams to navigate and monitor cluttered environments, however, is difficult and costly. Here, we present methods that would allow us to leverage managed colonies of honey bees equipped with miniature flight recorders to monitor orchard pollination activity. Tracking honey bee flights can inform estimates of crop pollination, allowing growers to improve yield and resource allocation. Honey bees are adept at maneuvering complex environments and collectively pool information about nectar and pollen sources through thousands of daily flights. Additionally, colonies are present in orchards before and during bloom for many crops, as growers often rent hives to ensure successful pollination. We characterize existing Angle-Sensitive Pixels (ASPs) for use in flight recorders and calculate memory and resolution trade-offs. We further integrate ASP data into a colony foraging simulator and show how large numbers of flights refine system accuracy, using methods from robotic mapping literature. Our results indicate promising potential for such agricultural monitoring, where we leverage the superiority of social insects to sense the physical world, while providing data acquisition on par with explicitly more » engineered systems. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Scientific Reports
Sponsoring Org:
National Science Foundation
More Like this
  1. Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January—March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies andmore »precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations.« less
  2. Males in Hymenopteran societies are understudied in many aspects and it is assumed that they only have a reproductive function. We studied the time budget of male honey bees, drones, using multiple methods. Changes in the activities of animals provide important information on biological clocks and their health. Yet, in nature, these changes are subtle and often unobservable without the development and use of modern technology. During the spring and summer mating season, drones emerge from the hive, perform orientation flights, and search for drone congregation areas for mating. This search may lead drones to return to their colony, drift to other colonies (vectoring diseases and parasites), or simply get lost to predation. In a low percentage of cases, the search is successful, and drones mate and die. Our objective was to describe the activity of Apis mellifera drones during the mating season in Northwestern Argentina using three methods: direct observation, video recording, and radio frequency identification (RFID). The use of RFID tagging allows the tracking of a bee for 24 h but does not reveal the detailed activity of drones. We quantified the average number of drones’ departure and arrival flights and the time outside the hive. All threemore »methods confirmed that drones were mostly active in the afternoon. We found no differences in results between those obtained by direct observation and by video recording. RFID technology enabled us to discover previously unknown drone behavior such as activity at dawn and during the morning. We also discovered that drones may stay inside the hive for many days, even after initiation of search flights (up to four days). Likewise, we observed drones to leave the hive for several days to return later (up to three days). The three methods were complementary and should be considered for the study of bee drone activity, which may be associated with the diverse factors influencing hive health.« less
  3. Honey bees are social insects that live in large groups called colonies, within structures known as hives. The young adult bees stay within the hive to build nests and care for the young, while the older bees leave the hive to forage for food. Honey bees store food and other valuable resources in their hives, so they are often targeted by predators, parasites and ‘robber’ bees from other colonies. Therefore, it is important for bees to determine whether individuals trying to enter the nest are group members or intruders. While it is known that social insects use blends of waxy chemicals called cuticular hydrocarbons to identify group members at the entrance to the colony, it is not clear how members of the same colony acquire a similar blend of cuticular hydrocarbons. Some previous work suggested that in some ant species (which are also social insects), colony members exchange cuticular hydrocarbons with each other so that all members of the colony are covered with a similar blend of chemicals. However, it was not known whether honey bees also share cuticular hydrocarbons between colony members in order to identify members of a hive. Vernier et al. used chemical, molecular and behavioral approachesmore »to study the cuticular hydrocarbons found on honey bees. The results show that, rather than exchanging chemicals with other members of their colony, individual bees make their own blends of cuticular hydrocarbons. As a bee ages it makes different blends of cuticular hydrocarbons, and by the time it starts to leave the hive to forage it makes a blend that is specific to the colony it belongs to. The production of this final blend is influenced by the environment within the hive. Thus, the findings of Vernier et al. indicate that honey bees guarding the entrance to a hive can only identify non-colony-member forager bees as intruders, rather than any non-colony-member bee that happens upon the hive entrance. Honey bees play an essential role in pollinating many crop plants so understanding how these insects maintain their social groups may help to improve agriculture in the future. Furthermore, this work may aid our understanding of how other social insects interact in a variety of biological situations.« less
  4. Abstract

    Honey bees are vital pollinators and can be used to monitor the landscape. Consequently, interest in mounting technologies onto bees to track foraging behaviors is increasing. The barrier to entry is steep, in part because the methodology for fastening tags to bees, and the success rates, are often missing from publications. We tested six factors suspected to influence the presence and tag retention rates of nurse honey bees after their introduction to hives, and followed bees until foraging age. We also compared reintroducing foragers to their maternal colony using the best method for nurse bees to releasing them in front of their maternal hive and allowing them to fly back unaided. Nurses were most likely to be present in the hive with their tag still attached when introduced using an introduction cage at night. Glue type was important, but may further be influenced by tag material. Foragers were most likely to be present with a tag attached if released in front of their colony. Preparation and introduction techniques influence the likelihood of tagged honey bee survival and of the tags remaining attached, which should be considered when executing honey bee tagging and tracking experiments.

  5. Beekeeping is a cornerstone activity that has led to the human-mediated, global spread of western honey bees ( Apis mellifera L.) outside their native range of Europe, western Asia, and Africa. The exportation/importation of honey bees (i.e., transfer of honey bees or germplasm between countries) is regulated at the national level in many countries. Honey bees were first imported into the United States in the early 1600’s. Today, honey bee movement (i.e., transport of honey bees among states and territories) is regulated within the United States at the state, territory, and federal levels. At the federal level, honey bees present in the country (in any state or territory) can be moved among states and territories without federal restriction, with the exception of movement to Hawaii. In contrast, regulations at the state and territory levels vary substantially, ranging from no additional regulations beyond those stipulated at the federal level, to strict regulations for the introduction of live colonies, packaged bees, or queens. This variability can lead to inconsistencies in the application of regulations regarding the movement of honey bees among states and territories. In November 2020, we convened a technical working group (TWG), composed of academic and USDA personnel, to reviewmore »and summarize the (1) history of honey bee importation into/movement within the United States, (2) current regulations regarding honey bee movement and case studies on the application of those regulations, (3) benefits associated with moving honey bees within the United States, (4) risks associated with moving honey bees within the United States, and (5) risk mitigation strategies. This review will be helpful for developing standardized best practices for the safe movement of honey bees between the 48 contiguous states and other states/territories within the United States.« less