skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 7, 2026

Title: Spatiotemporal, environmental, and behavioral predictors of Varroa mite intensity in managed honey bee apiaries
Honey bees contribute substantially to the world economy through pollination services and honey production. In the U.S. alone, honey bee pollination is estimated to contribute at least $11 billion annually, primarily through the pollination of specialty crops. However, beekeepers lose about half of their hives every season due to disease, insecticides, and other environmental factors. Here, we explore and validate a spatiotemporal statistical model ofVarroa destructormite burden (in mites/300 bees) in managed honey bee colonies, exploring the impact of both environmental factors and beekeeper behaviors. We examine risk factors forVarroainfestation using apiary inspection data collected across the state of Illinois over 2018–2019, and we test the models using inspection data from 2020–2021. After accounting for spatial and temporal trends, we find that most environmental factors (e.g., floral quality, insecticide load) are not predictive ofVarroaintensity, while lower numbers of nearby apiaries and several beekeeper behaviors (e.g., supplemental feeding and mite monitoring/treatment) are protective againstVarroa. Interestingly, while monitoringandtreating forVarroais protective, treatingwithoutmonitoring is no more effective than not treating at all. This is an important result supporting Integrated Pest Management (IPM) approaches.  more » « less
Award ID(s):
2022049
PAR ID:
10629090
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Rueppell, Olav
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS One
Volume:
20
Issue:
8
ISSN:
1932-6203
Page Range / eLocation ID:
e0325801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With ongoing colony losses driven in part by the Varroa mite and the associated exacerbation of the virus load, there is an urgent need to protect honey bees (Apis mellifera) from fatal levels of virus infection and from the non-target effects of insecticides used in agricultural settings. A continuously replicating cell line derived from the honey bee would provide a valuable tool for the study of molecular mechanisms of virus–host interaction, for the screening of antiviral agents for potential use within the hive, and for the assessment of the risk of current and candidate insecticides to the honey bee. However, the establishment of a continuously replicating honey bee cell line has proved challenging. Here, we provide an overview of attempts to establish primary and continuously replicating hymenopteran cell lines, methods (including recent results) of establishing honey bee cell lines, challenges associated with the presence of latent viruses (especially Deformed wing virus) in established cell lines and methods to establish virus-free cell lines. We also describe the potential use of honey bee cell lines in conjunction with infectious clones of honey bee viruses for examination of fundamental virology. 
    more » « less
  2. Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January—March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations. 
    more » « less
  3. Abstract BackgroundHoney bees are not only essential for pollination services, but are also economically important as a source of hive products (e.g., honey, royal jelly, pollen, wax, and propolis) that are used as foods, cosmetics, and alternative medicines. Royal jelly is a popular honey bee product with multiple potential medicinal properties. To boost royal jelly production, a long-term genetic selection program of Italian honey bees (ITBs) in China has been performed, resulting in honey bee stocks (here referred to as RJBs) that produce an order of magnitude more royal jelly than ITBs. Although multiple studies have investigated the molecular basis of increased royal jelly yields, one factor that has not been considered is the role of honey bee-associated gut microbes. ResultsBased on the behavioral, morphological, physiological, and neurological differences between RJBs and ITBs, we predicted that the gut microbiome composition of RJBs bees would differ from ITBs. To test this hypothesis, we investigated the bacterial composition of RJB and ITB workers from an urban location and RJBs from a rural location in China. Based on 16S rRNA gene profiling, we did not find any evidence that RJBs possess a unique bacterial gut community when compared to ITBs. However, we observed differences between honey bees from the urban versus rural sites. ConclusionsOur results suggest that the environmental factors rather than stock differences are more important in shaping the bacterial composition in honey bee guts. Further studies are needed to investigate if the observed differences in relative abundance of taxa between the urban and rural bees correspond to distinct functional capabilities that impact honey bee health. Because the lifestyle, diet, and other environmental variables are different in rural and urban areas, controlled studies are needed to determine which of these factors are responsible for the observed differences in gut bacterial composition between urban and rural honeybees. 
    more » « less
  4. Bee declines have been partly attributed to the impacts of invasive or emerging parasite outbreaks. For western honeybees,Apis mellifera, major losses are associated with the virus-vectoring mite,Varroa destructor. In response, beekeepers have focused breeding efforts aimed at conferring resistance to this key parasite. One method of many is survival-based beekeeping where colonies that survive despite significantVarroainfestations produce subsequent colonies. We argue that this ‘hands-off’ approach will not always lead toVarroaresistance evolving but rather tolerance. Tolerance minimizes host fitness costs of parasitism without reducing parasite abundance, whereas resistance either prevents parasitism outright or keeps parasitism intensity low. With clear epidemiological distinctions, and as honeybee disease dynamics impact other wild bees owing to shared pathogens, we discuss why tolerance outcomes in honeybee breeding have important implications for wider pollinator health. Crucially, we argue that unintentional selection for tolerance will not only lead to more spillover from honeybees but may also select for pathogens that are more virulent in wild bees leading to ‘tragedies of tolerance’. These tragedies can be avoided through successful breeding regimes that specifically select for lowVarroa. We emphasize how insights from evolutionary ecology can be applied in ecologically responsible honeybee management. 
    more » « less
  5. Abstract Lithium has been considered a potential acaricidal agent against the honey bee (Apis mellifera) parasite Varroa. It is known that lithium suppresses elevated activity and regulates circadian rhythms and light response when administered to humans as a primary therapeutic chemical for bipolar disorder and to other bipolar syndrome model organisms, given the crucial role of timing in the bee's foraging activity and the alternating sunlight vs dark colony environment bees are exposed, we explored the influence of lithium on locomotor activity (LMA) and circadian rhythm of honey bees. We conducted acute and chronic lithium administration experiments, altering light conditions and lithium doses to assess LMA and circadian rhythm changes. We fed bees one time 10 μl sucrose solution with 0, 50, 150, and 450 mM LiCl in the acute application experiment and 0, 1, 5, and 10 mmol/kg LiCl ad libitum in bee candy in the chronic application experiment. Both acute and chronic lithium treatments significantly decreased the induced LMA under constant light. Chronic lithium treatment disrupted circadian rhythmicity in constant darkness. The circadian period was lengthened by lithium treatment under constant light. We discuss the results in the context ofVarroacontrol and lithium's effect on bipolar disorder. 
    more » « less