- Award ID(s):
- 1945500
- PAR ID:
- 10311255
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 17
- Issue:
- 24
- ISSN:
- 1744-683X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Excitonic energy transfer is a versatile mechanism by which colloidal semiconductor nanocrystals can interact with a variety of nanoscale species. While this process is analogous to dipole–dipole coupling in molecular systems, the corresponding energy transfer dynamics can deviate from that of molecular assemblies due to manifestations of bulk-like features in semiconductor colloids. In particular, weak exciton binding, small singlet–triplet exciton splitting, and the energy disorder across nanocrystal ensembles can all play distinctive roles in the ensuing energy conversion processes. To characterize the variety of energy transfer schemes involving nanocrystals, this feature article will discuss the latest research by both our group and other groups on the key scenarios under which nanocrystals can engage in energy transfer with other nanoparticles, organic fluorophores, and plasmonic nanostructures, highlighting potential technological benefits to be gained from such processes. We will also shed light on experimental strategies for probing the energy transfer in nanocrystal-based assemblies, with a particular emphasis on novel characterization techniques.more » « less
-
Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at temperatures above −10 °C. Bacteria and fungi produce particularly potent INs that can promote water crystallization above −5 °C. Bacterial INs consist of extended protein units that aggregate to achieve superior functionality. Despite decades of research, the nature and identity of fungal INs remain elusive. Here, we combine ice nucleation measurements, physicochemical characterization, numerical modeling, and nucleation theory to shed light on the size and nature of the INs from the fungus
Fusarium acuminatum . We find ice-binding and ice-shaping activity ofFusarium IN, suggesting a potential connection between ice growth promotion and inhibition. We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits that assemble into ice-nucleating complexes that can contain more than 100 subunits.Fusarium INs retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded proteins are initially present, suggesting robust pathways for their functional aggregation in cell-free aqueous environments. We conclude that the use of small proteins to build large assemblies is a common strategy among organisms to create potent biological INs. -
Abstract Atomic-scale molecular modeling and simulation are powerful tools for computational biology. However, constructing models with large, densely packed molecules, non-water solvents, or with combinations of multiple biomembranes, polymers, and nanomaterials remains challenging and requires significant time and expertise. Furthermore, existing tools do not support such assemblies under the periodic boundary conditions (PBC) necessary for molecular simulation. Here, we describe Multicomponent Assembler in CHARMM-GUI that automates complex molecular assembly and simulation input preparation under the PBC. In this work, we demonstrate its versatility by preparing 6 challenging systems with varying density of large components: (1) solvated proteins, (2) solvated proteins with a pre-equilibrated membrane, (3) solvated proteins with a sheet-like nanomaterial, (4) solvated proteins with a sheet-like polymer, (5) a mixed membrane-nanomaterial system, and (6) a sheet-like polymer with gaseous solvent. Multicomponent Assembler is expected to be a unique cyberinfrastructure to study complex interactions between small molecules, biomacromolecules, polymers, and nanomaterials.
-
Abstract Herein, we report that assemblies of nucleopeptides selectively sequester ATP in complex conditions (for example, serum and cytosol). We developed assemblies of nucleopeptides that selectively sequester ATP over ADP. Counteracting enzymes interconvert ATP and ADP to modulate the nanostructures formed by the nucleopeptides and the nucleotides. The nucleopeptides, sequestering ATP effectively in cells, slow down efflux pumps in multidrug‐resistant cancer cells, thus boosting the efficacy of doxorubicin, an anticancer drug. Investigation of 11 nucleopeptides (including
d ‐ andl ‐enantiomers) yields five more nucleopeptides that differentiate ATP and ADP through either precipitation or gelation. As the first example of assemblies of nucleopeptides that interact with ATP and disrupt intracellular ATP dynamics, this work illustrates the use of supramolecular assemblies to interact with small and essential biological molecules for controlling cell behavior. -
The aversion of hydrophobic solutes for water drives diverse interactions and assemblies across materials science, biology, and beyond. Here, we review the theoretical, computational, and experimental developments that underpin a contemporary understanding of hydrophobic effects. We discuss how an understanding of density fluctuations in bulk water can shed light on the fundamental differences in the hydration of molecular and macroscopic solutes; these differences, in turn, explain why hydrophobic interactions become stronger upon increasing temperature. We also illustrate the sensitive dependence of surface hydrophobicity on the chemical and topographical patterns the surface displays, which makes the use of approximate approaches for estimating hydrophobicity particularly challenging. Importantly, the hydrophobicity of complex surfaces, such as those of proteins, which display nanoscale heterogeneity, can nevertheless be characterized using interfacial water density fluctuations; such a characterization also informs protein regions that mediate their interactions. Finally, we build upon an understanding of hydrophobic hydration and the ability to characterize hydrophobicity to inform the context-dependent thermodynamic forces that drive hydrophobic interactions and the desolvation barriers that impede them.more » « less