We derive an effective spin-Hamiltonian accounting for the exciton fine structure in quasi-spherical zinc-blende semiconductor nanocrystals within the k · p formalism explicitly taking into account the spin-orbit split-off valence band. It is shown that, for excitons in nanocrystals made of III-V and II-VI semiconductors with fairly small spin-orbit splitting, the scaling of the electron-hole exchange interaction with the nanocrystal size insignificantly differs from the inverse nanocrystal volume law predicted within the model neglecting the spin-orbit split-off band. Numerical calculations are performed for InP nanocrystals.
more »
« less
Colloidal semiconductor nanocrystals in energy transfer reactions
Excitonic energy transfer is a versatile mechanism by which colloidal semiconductor nanocrystals can interact with a variety of nanoscale species. While this process is analogous to dipole–dipole coupling in molecular systems, the corresponding energy transfer dynamics can deviate from that of molecular assemblies due to manifestations of bulk-like features in semiconductor colloids. In particular, weak exciton binding, small singlet–triplet exciton splitting, and the energy disorder across nanocrystal ensembles can all play distinctive roles in the ensuing energy conversion processes. To characterize the variety of energy transfer schemes involving nanocrystals, this feature article will discuss the latest research by both our group and other groups on the key scenarios under which nanocrystals can engage in energy transfer with other nanoparticles, organic fluorophores, and plasmonic nanostructures, highlighting potential technological benefits to be gained from such processes. We will also shed light on experimental strategies for probing the energy transfer in nanocrystal-based assemblies, with a particular emphasis on novel characterization techniques.
more »
« less
- Award ID(s):
- 1710063
- PAR ID:
- 10093440
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 55
- Issue:
- 21
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 3033 to 3048
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Both absorption and emission of light in semiconductor quantum dots occur through excitation or recombination of confined electron−hole pairs, or excitons, with tunable size-dependent resonant frequencies that are ideal for applications in various fields. Some of these applications require control over quantum dot shape uniformity, while for others, control over energy splittings among exciton states emitting light in different polarizations and/or between bright and dark exciton states is of key importance. These splittings, known as exciton fine structure, are very sensitive to the nanocrystal shape. Theoretically, nanocrystals of spheroidal shape are often considered, and their nonsphericity is treated perturbatively as stemming from a linear uniaxial deformation of a sphere. Here, we compare this treatment with a nonperturbative model of a cylindrical box, free of any restrictions on the cylinder’s aspect ratio. This comparison allows one to understand the limits of validity of the traditional perturbative model and offers insights into the relative importance of various mechanisms controlling the exciton fine structure. These insights are relevant to both colloidal nanocrystals and epitaxial quantum dots of III−V and II−VI semiconductors.more » « less
-
We report the successful synthesis of monodispersed Cu2S nanocrystals and the subsequent formation of highly ordered nanocrystal superlattices. The synthesis is performed under ambient air conditions using simple experimental setups, making the process both accessible and scalable. By systematically tuning the reaction temperature and duration, we demonstrate precise control over the nanocrystal size, which is crucial in achieving uniformity and monodispersity. Furthermore, we uncover a previously unidentified nanocrystal growth mechanism that plays a key role in producing highly monodisperse Cu2S nanocrystals. This insight into the growth process enhances our fundamental understanding of nanocrystal formation and could be extended to the synthesis of other semiconductor nanomaterials. The self-assembly of these nanocrystals into superlattices is carefully examined using electron diffraction techniques, revealing the presence of pseudo-crystalline structures. The ordered arrangement of nanocrystals within these superlattices suggests strong interparticle interactions and opens up new possibilities to tailor their collective optical, electronic, and mechanical properties for potential applications in optoelectronics, nanomedicine, and energy storage.more » « less
-
There is great interest in developing inexpensive, molecular light-harvesting systems capable of efficiently converting photon energy to chemical potential energy. It is highly desirable to do so using self-assembly and in a manner that supports environmentally benign processing. A critical consideration in any such assembly is the ability to absorb a substantial fraction of the solar emission spectrum and to be able to efficiently move excited states through the space to a functional interface. We have previously shown that aqueous inter-conjugated polyelectrolyte (CPE) complexes can act as ultrafast and efficient energy-transfer antennae. Here we demonstrate formation of a hierarchically assembled, aqueous system based on an inter-CPE exciton donor/acceptor network and a lipid vesicle scaffold. Using a model small-molecule organic semiconductor embedded in the vesicle membrane, we form a ternary exciton funnel that is oriented towards the membrane interior. We show that, although energy transfer is efficient, the assembly morphology depends sensitively on preparation conditions and relative ionic stoichiometry. We propose several approaches towards stabilizing such aqueous assemblies. This work highlights a path to formation of an aqueous, panchromatic light-harvesting system, whose functional complexity can be systematically increased with modularity.more » « less
-
Colloidal semiconductor nanocrystals (NCs) have emerged as promising candidates for developing solutionprocessable optical gain media with potential applications in integrated photonic circuits and lasers. However, the deployment of NCs in these technologies has been hindered by the nonradiative Auger recombination of multiexciton states, which shortens the optical gain lifetime and reduces its spectral range. Here, we demonstrate that these limitations can be overcome by using giant colloidal quantum shells (g-QSs), comprising a quantum-confined CdSe shell grown over a large (∼14 nm) CdS bulk core. Such bulk-nanoscale architecture minimizes exciton− exciton interactions, leading to suppressed Auger recombination and one of the broadest gain bandwidths reported for colloidal nanomaterials, spanning energies both above and, remarkably, below the bandgap. Ultrafast transient absorption and photoluminescence measurements demonstrate that the high-energy portion of optical gain arises from states containing more than 15 excitons per particle, while the unusual sub-bandgap gain behavior results from an Auger-assisted radiative recombination, a mechanism that has traditionally been viewed as a loss pathway. Collectively, these results reveal a unique gain regime associated with bulk-nanocrystal hybrid systems, which offers a promising path toward solution-processable light sources.more » « less
An official website of the United States government

