skip to main content


Title: The SEECRS Scholar Academy at Whatcom Community College: Three Cohorts of S-STEM Scholarships Later
The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is in year four of a five-year NSF S-STEM funded program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This program offered financial, academic, and professional support to three two-year cohorts of students and is in the final year of the third and final cohort of the currently funded grant cycle. The SEECRS project aimed to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Over the course of the program 39 individuals received scholarship support. The program supported scholarship recipients through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Key elements of the program are: a required two-credit course that emphasized STEM identity development, course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and paring of each scholar with a faculty mentor. This paper presents data from the first four years of the program including participant outcomes and feedback on their experiences. Results from project evaluation activities such as pre and post surveys, focus groups, exit interviews, and faculty surveys are also presented and analyzed to compare how gains reported by program participants regarding such attributes as their STEM identities and sense of belonging compare to responses from a control group of students who did not participate in the program. Preliminary identification of some program best practices will also be presented.  more » « less
Award ID(s):
1643633
NSF-PAR ID:
10311355
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and faculty mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented. 
    more » « less
  2. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and faculty mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented. 
    more » « less
  3. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170). 
    more » « less
  4. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170). 
    more » « less
  5. Eastern Mennonite University received a 5-year S-STEM award for their STEM Scholars Engaging in Local Problems (SSELP) program. The goal of this place-based, interdisciplinary scholarship program is to increase the number of academically talented, low-income students who graduate in STEM fields and either pursue immediate employment in STEM careers or STEM-related service or continue their STEM education in graduate school. In 2018 and 2019, two cohorts of seven students were recruited to major in biology, chemistry, engineering, computer science, mathematics, or environmental science. A key part of recruitment involved on-campus interviews, during a February Scholarship Day, between STEM faculty and potential scholars. As the yield rate for the event is high (54-66%), the university has continued this practice, funding additional STEM scholarships. In order to retain and graduate the scholars in STEM fields, the SSELP faculty designed and carried out various projects and activities to support the students. The SSELP Scholars participated in a first-year STEM Career Practicum class, a one-credit course that connected students with regional STEM practitioners across a variety of fields. The scholars were supported by peer tutors embedded in STEM classes, and now many are tutors themselves. They participated in collaborative projects where the cohorts worked to identify and solve a problem or need in their community. The SSELP scholars were supported by both faculty and peer mentors. Each scholarship recipient was matched with a faculty mentor in addition to an academic advisor. A faculty mentor was in a related STEM field but typically not teaching the student. Each scholar was matched with a peer mentor (junior or senior) in their intended major of study. In addition, community building activities were implemented to provide a significant framework for interaction within the cohort. To evaluate the progress of the SSELP program, multiple surveys were conducted. HERI/CIRP Freshman Survey was used in the fall of 2018 for the first cohort and 2019 for the second cohort. The survey indicated an upward shift in students’ perception of science and in making collaborative effort towards positive change. Preliminary data on the Science Motivation Questionnaire showed that the SSELP scholars began their university studies with lower averages than their non-SSELP STEM peers in almost every area of science motivation. After over three years of implementation of the NSF-funded STEM Scholars Engaging in Local Problems program, the recruitment effort has grown significantly in STEM fields in the university. Within the two cohorts, the most common majors were environmental science and engineering. While 100% of Cohorts 1 and 2 students were retained into the Fall semester of the second year, two students from Cohort 1 left the program between the third and fourth semesters of their studies. While one student from Cohort 2 had a leave of absence, they have returned to continue their studies. The support system formed among the SSELP scholars and between the scholars and faculty has benefited the students in both their academic achievement as well as their personal growth. 
    more » « less