skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coded-InvNet for Resilient Prediction Serving Systems
Inspired by a new coded computation algorithm for invertible functions, we propose Coded-InvNet a new approach to design resilient prediction serving systems that can gracefully handle stragglers or node failures. Coded-InvNet leverages recent findings in the deep learning literature such as invertible neural networks, Manifold Mixup, and domain translation algorithms, identifying interesting research directions that span across machine learning and systems. Our experimental results show that Coded-InvNet can outperform existing approaches, especially when the compute resource overhead is as low as 10%. For instance, without knowing which of the ten workers is going to fail, our algorithm can design a backup task so that it can correctly recover the missing prediction result with an accuracy of 85.9%, significantly outperforming the previous SOTA by 32.5%.  more » « less
Award ID(s):
2003129
PAR ID:
10311444
Author(s) / Creator(s):
;
Editor(s):
Meila, Marina; Zhang, Tong
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
139
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Code-multiplexed Coulter sensors can easily be integrated into microfluidic devices and provide information on spatiotemporal manipulations of suspended particles for quantitative sample assessment. In this paper, we introduced a deep learning-based decoding algorithm to process the output waveform from a network of code- multiplexed Coulter sensors on a microfluidic device. Our deep learning-based algorithm both simplifies the design of coded Coulter sensors and increases the signal processing speed. As a proof of principle, we designed and fabricated a microfluidic platform with 10 code-multiplexed Coulter sensors, and used a suspension of human ovarian cancer cells as a test sample to characterize the system. Our deep learning-based algorithm resulted in an 87% decoding accuracy at a sample processing speed of 800 particles/s. 
    more » « less
  2. null (Ed.)
    Abstract Automated inverse design methods are critical to the development of metamaterial systems that exhibit special user-demanded properties. While machine learning approaches represent an emerging paradigm in the design of metamaterial structures, the ability to retrieve inverse designs on-demand remains lacking. Such an ability can be useful in accelerating optimization-based inverse design processes. This paper develops an inverse design framework that provides this capability through the novel usage of invertible neural networks (INNs). We exploit an INN architecture that can be trained to perform forward prediction over a set of high-fidelity samples and automatically learns the reverse mapping with guaranteed invertibility. We apply this INN for modeling the frequency response of periodic and aperiodic phononic structures, with the performance demonstrated on vibration suppression of drill pipes. Training and testing samples are generated by employing a transfer matrix method. The INN models provide competitive forward and inverse prediction performance compared to typical deep neural networks (DNNs). These INN models are used to retrieve approximate inverse designs for a queried non-resonant frequency range; the inverse designs are then used to initialize a constrained gradient-based optimization process to find a more accurate inverse design that also minimizes mass. The INN-initialized optimizations are found to be generally superior in terms of the queried property and mass compared to randomly initialized and inverse DNN-initialized optimizations. Particle swarm optimization with INN-derived initial points is then found to provide even better solutions, especially for the higher-dimensional aperiodic structures. 
    more » « less
  3. Accurate predictions of water temperature are the foundation for many decisions and regulations, with direct impacts on water quality, fishery yields, and power production. Building accurate broad-scale models for lake temperature prediction remains challenging in practice due to the variability in the data distribution across different lake systems monitored by static and time-series data. In this paper, to tackle the above challenges, we propose a novel machine learning based approach for integrating static and time-series data in deep recurrent models, which we call Invertibility-Aware-Long Short-Term Memory(IA-LSTM), and demonstrate its effectiveness in predicting lake temperature. Our proposed method integrates components of the Invertible Network and LSTM to better predict temperature profiles (forward modeling) and infer the static features (i.e., inverse modeling) that can eventually enhance the prediction when static variables are missing. We evaluate our method on predicting the temperature profile of 450 lakes in the Midwestern U.S. and report a relative improvement of 4\% to capture data heterogeneity and simultaneously outperform baseline predictions by 12\% when static features are unavailable. 
    more » « less
  4. As the use of X-ray computed tomography (CT) grows in medical diagnosis, so does the concern for the harm a radiation dose can cause and the biological risks it represents. StaticCodeCT is a new low-dose imaging architecture that uses a single-static coded aperture (CA) in a CT gantry. It exploits the highly correlated data in the projection domain to estimate the unobserved measurements on the detector. We previously analyzed the StaticCodeCT system by emulating the effect of the coded mask on experimental CT data. In contrast, this manuscript presents test-bed reconstructions using an experimental cone-beam X-ray CT system with a CA holder. We analyzed the reconstruction quality using three different techniques to manufacture the CAs: metal additive manufacturing, cold casting, and ceramic additive manufacturing. Furthermore, we propose an optimization method to design the CA pattern based on the algorithm developed for the measurement estimation. The obtained results point to the possibility of the real deployment of StaticCodeCT systems in practice. 
    more » « less
  5. Our extensive real measurements over Amazon EC2 show that the virtual instances often have different computing speeds even if they share the same configurations. This motivates us to study heterogeneous Coded Storage Elastic Computing (CSEC) systems where machines, with different computing speeds, join and leave the network arbitrarily over different computing steps. In CSEC systems, a Maximum Distance Separable (MDS) code is used for coded storage such that the file placement does not have to be re-defined with each elastic event. Computation assignment algorithms are used to minimize the computation time given computation speeds of different machines. While previous studies of heterogeneous CSEC do not include stragglers - the slow machines during the computation, we develop a new framework in heterogeneous CSEC that introduces straggler tolerance. Based on this framework, we design a novel algorithm using our previously proposed approach for heterogeneous CSEC such that the system can handle any subset of stragglers of a specified size while minimizing the computation time. Furthermore, we establish a trade-off in computation time and straggler tolerance. Another major limitation of existing CSEC designs is the lack of practical evaluations using real applications. In this paper, we evaluate the performance of our designs on Amazon EC2 for applications of the power iteration and linear regression. Evaluation results show that the proposed heterogeneous CSEC algorithms outperform the state-of-the-art designs by more than 30%. 
    more » « less