skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Coded-InvNet for Resilient Prediction Serving Systems
Inspired by a new coded computation algorithm for invertible functions, we propose Coded-InvNet a new approach to design resilient prediction serving systems that can gracefully handle stragglers or node failures. Coded-InvNet leverages recent findings in the deep learning literature such as invertible neural networks, Manifold Mixup, and domain translation algorithms, identifying interesting research directions that span across machine learning and systems. Our experimental results show that Coded-InvNet can outperform existing approaches, especially when the compute resource overhead is as low as 10%. For instance, without knowing which of the ten workers is going to fail, our algorithm can design a backup task so that it can correctly recover the missing prediction result with an accuracy of 85.9%, significantly outperforming the previous SOTA by 32.5%.  more » « less
Award ID(s):
2003129
PAR ID:
10311444
Author(s) / Creator(s):
;
Editor(s):
Meila, Marina; Zhang, Tong
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
139
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Code-multiplexed Coulter sensors can easily be integrated into microfluidic devices and provide information on spatiotemporal manipulations of suspended particles for quantitative sample assessment. In this paper, we introduced a deep learning-based decoding algorithm to process the output waveform from a network of code- multiplexed Coulter sensors on a microfluidic device. Our deep learning-based algorithm both simplifies the design of coded Coulter sensors and increases the signal processing speed. As a proof of principle, we designed and fabricated a microfluidic platform with 10 code-multiplexed Coulter sensors, and used a suspension of human ovarian cancer cells as a test sample to characterize the system. Our deep learning-based algorithm resulted in an 87% decoding accuracy at a sample processing speed of 800 particles/s. 
    more » « less
  2. Ribonucleic acid (RNA) is a fundamental biological molecule that is essential to all living organisms, performing a versatile array of cellular tasks. The function of many RNA molecules is strongly related to the structure it adopts. As a result, great effort is being dedicated to the design of efficient algorithms that solve the “folding problem”—given a sequence of nucleotides, return a probable list of base pairs, referred to as the secondary structure prediction. Early algorithms largely rely on finding the structure with minimum free energy. However, the predictions rely on effective simplified free energy models that may not correctly identify the correct structure as the one with the lowest free energy. In light of this, new, data-driven approaches that not only consider free energy, but also use machine learning techniques to learn motifs are also investigated and recently been shown to outperform free energy–based algorithms on several experimental data sets. In this work, we introduce the new ExpertRNA algorithm that provides a modular framework that can easily incorporate an arbitrary number of rewards (free energy or nonparametric/data driven) and secondary structure prediction algorithms. We argue that this capability of ExpertRNA has the potential to balance out different strengths and weaknesses of state-of-the-art folding tools. We test ExpertRNA on several RNA sequence-structure data sets, and we compare the performance of ExpertRNA against a state-of-the-art folding algorithm. We find that ExpertRNA produces, on average, more accurate predictions of nonpseudoknotted secondary structures than the structure prediction algorithm used, thus validating the promise of the approach. Summary of Contribution: ExpertRNA is a new algorithm inspired by a biological problem. It is applied to solve the problem of secondary structure prediction for RNA molecules given an input sequence. The computational contribution is given by the design of a multibranch, multiexpert rollout algorithm that enables the use of several state-of-the-art approaches as base heuristics and allowing several experts to evaluate partial candidate solutions generated, thus avoiding assuming the reward being optimized by an RNA molecule when folding. Our implementation allows for the effective use of parallel computational resources as well as to control the size of the rollout tree as the algorithm progresses. The problem of RNA secondary structure prediction is of primary importance within the biology field because the molecule structure is strongly related to its functionality. Whereas the contribution of the paper is in the algorithm, the importance of the application makes ExpertRNA a showcase of the relevance of computationally efficient algorithms in supporting scientific discovery. 
    more » « less
  3. null (Ed.)
    Abstract Automated inverse design methods are critical to the development of metamaterial systems that exhibit special user-demanded properties. While machine learning approaches represent an emerging paradigm in the design of metamaterial structures, the ability to retrieve inverse designs on-demand remains lacking. Such an ability can be useful in accelerating optimization-based inverse design processes. This paper develops an inverse design framework that provides this capability through the novel usage of invertible neural networks (INNs). We exploit an INN architecture that can be trained to perform forward prediction over a set of high-fidelity samples and automatically learns the reverse mapping with guaranteed invertibility. We apply this INN for modeling the frequency response of periodic and aperiodic phononic structures, with the performance demonstrated on vibration suppression of drill pipes. Training and testing samples are generated by employing a transfer matrix method. The INN models provide competitive forward and inverse prediction performance compared to typical deep neural networks (DNNs). These INN models are used to retrieve approximate inverse designs for a queried non-resonant frequency range; the inverse designs are then used to initialize a constrained gradient-based optimization process to find a more accurate inverse design that also minimizes mass. The INN-initialized optimizations are found to be generally superior in terms of the queried property and mass compared to randomly initialized and inverse DNN-initialized optimizations. Particle swarm optimization with INN-derived initial points is then found to provide even better solutions, especially for the higher-dimensional aperiodic structures. 
    more » « less
  4. Abstract

    Active learning is a subfield of machine learning that focuses on improving the data collection efficiency in expensive-to-evaluate systems. Active learning-applied surrogate modeling facilitates cost-efficient analysis of demanding engineering systems, while the existence of heterogeneity in underlying systems may adversely affect the performance. In this article, we propose the partitioned active learning that quantifies informativeness of new design points by circumventing heterogeneity in systems. The proposed method partitions the design space based on heterogeneous features and searches for the next design point with two systematic steps. The global searching scheme accelerates exploration by identifying the most uncertain subregion, and the local searching utilizes circumscribed information induced by the local Gaussian process (GP). We also propose Cholesky update-driven numerical remedies for our active learning to address the computational complexity challenge. The proposed method consistently outperforms existing active learning methods in three real-world cases with better prediction and computation time.

     
    more » « less
  5. Accurate predictions of water temperature are the foundation for many decisions and regulations, with direct impacts on water quality, fishery yields, and power production. Building accurate broad-scale models for lake temperature prediction remains challenging in practice due to the variability in the data distribution across different lake systems monitored by static and time-series data. In this paper, to tackle the above challenges, we propose a novel machine learning based approach for integrating static and time-series data in deep recurrent models, which we call Invertibility-Aware-Long Short-Term Memory(IA-LSTM), and demonstrate its effectiveness in predicting lake temperature. Our proposed method integrates components of the Invertible Network and LSTM to better predict temperature profiles (forward modeling) and infer the static features (i.e., inverse modeling) that can eventually enhance the prediction when static variables are missing. We evaluate our method on predicting the temperature profile of 450 lakes in the Midwestern U.S. and report a relative improvement of 4\% to capture data heterogeneity and simultaneously outperform baseline predictions by 12\% when static features are unavailable. 
    more » « less