skip to main content


Title: Invertibility aware Integration of Static and Time-series data: An application to Lake Temperature Modeling. (2022 SDM Best Paper Award)
Accurate predictions of water temperature are the foundation for many decisions and regulations, with direct impacts on water quality, fishery yields, and power production. Building accurate broad-scale models for lake temperature prediction remains challenging in practice due to the variability in the data distribution across different lake systems monitored by static and time-series data. In this paper, to tackle the above challenges, we propose a novel machine learning based approach for integrating static and time-series data in deep recurrent models, which we call Invertibility-Aware-Long Short-Term Memory(IA-LSTM), and demonstrate its effectiveness in predicting lake temperature. Our proposed method integrates components of the Invertible Network and LSTM to better predict temperature profiles (forward modeling) and infer the static features (i.e., inverse modeling) that can eventually enhance the prediction when static variables are missing. We evaluate our method on predicting the temperature profile of 450 lakes in the Midwestern U.S. and report a relative improvement of 4\% to capture data heterogeneity and simultaneously outperform baseline predictions by 12\% when static features are unavailable.  more » « less
Award ID(s):
1934721
PAR ID:
10346151
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
2022 SIAM International Conference on Data Mining (SDM)
ISSN:
2167-0102
Page Range / eLocation ID:
702 - 710
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the increasing impact of climate change and relative sea level rise, low-lying coastal communities face growing risks from recurrent nuisance flooding and storm tides. Thus, timely and reliable predictions of coastal water levels are critical to resilience in vulnerable coastal areas. Over the past decade, there has been increasing interest in utilizing machine learning (ML) based models for emulation and prediction of coastal water levels. However, flood advisory systems still rely on running computationally demanding hydrodynamic models. To alleviate the computational burden, these physics-based models are either run at small scales with high resolution or at large scales with low resolution. While ML-based models are very fast, they face challenges in terms of ensuring reliability and ability to capture any surge levels. In this paper, we develop a deep neural network for spatiotemporal prediction of water levels in coastal areas of the Chesapeake Bay in the U.S. Our model relies on data from numerical weather prediction models as the atmospheric input and astronomical tide levels, while its outputs are time series of predicted water levels at several tide gauge locations across the Chesapeake Bay. We utilized a CNN-LSTM setting as the architecture of the model. The CNN part extracts the features from a sequence of gridded wind fields and fuses its output to several independent LSTM units. The LSTM units concatenate the atmospheric features with respective astronomical tide levels and produce water level time series. The novel contribution of the present work is in spatiotemporality and in prioritization of the physical relationships in the model to maintain a high analogy to hydrodynamic modeling, either in the network architecture or in the selection of predictors and predictands. The results show that this setting yields a strong performance in predicting coastal water levels that cause flooding from minor to major levels. We also show that the model stands up successfully to the rigorous comparison with a high-fidelity ADCIRC model, yielding mean RMSE and correlation coefficient of 14.3 cm and 0.94, respectively, in two extreme cases, versus 12.30 cm and 0.96 for the ADCIRC model. The results highlight the practical feasibility of employing fast yet inexpensive data-driven models for resilient coastal management. 
    more » « less
  2. Machine and deep learning-based algorithms are the emerging approaches in addressing prediction problems in time series. These techniques have been shown to produce more accurate results than conventional regression-based modeling. It has been reported that artificial Recurrent Neural Networks (RNN) with memory, such as Long Short-Term Memory (LSTM), are superior compared to Autoregressive Integrated Moving Average (ARIMA) with a large margin. The LSTM-based models incorporate additional “gates” for the purpose of memorizing longer sequences of input data. The major question is that whether the gates incorporated in the LSTM architecture already offers a good prediction and whether additional training of data would be necessary to further improve the prediction. Bidirectional LSTMs (BiLSTMs) enable additional training by traversing the input data twice (i.e., 1) left-to-right, and 2) right-to-left). The research question of interest is then whether BiLSTM, with additional training capability, outperforms regular unidirectional LSTM. This paper reports a behavioral analysis and comparison of BiLSTM and LSTM models. The objective is to explore to what extend additional layers of training of data would be beneficial to tune the involved parameters. The results show that additional training of data and thus BiLSTM-based modeling offers better predictions than regular LSTM-based models. More specifically, it was observed that BiLSTM models provide better predictions compared to ARIMA and LSTM models. It was also observed that BiLSTM models reach the equilibrium much slower than LSTM-based models. 
    more » « less
  3. Streamflow prediction plays a vital role in water resources planning in order to understand the dramatic change of climatic and hydrologic variables over different time scales. In this study, we used machine learning (ML)-based prediction models, including Random Forest Regression (RFR), Long Short-Term Memory (LSTM), Seasonal Auto- Regressive Integrated Moving Average (SARIMA), and Facebook Prophet (PROPHET) to predict 24 months ahead of natural streamflow at the Lees Ferry site located at the bottom part of the Upper Colorado River Basin (UCRB) of the US. Firstly, we used only historic streamflow data to predict 24 months ahead. Secondly, we considered meteorological components such as temperature and precipitation as additional features. We tested the models on a monthly test dataset spanning 6 years, where 24-month predictions were repeated 50 times to ensure the consistency of the results. Moreover, we performed a sensitivity analysis to identify our best-performing model. Later, we analyzed the effects of considering different span window sizes on the quality of predictions made by our best model. Finally, we applied our best-performing model, RFR, on two more rivers in different states in the UCRB to test the model’s generalizability. We evaluated the performance of the predictive models using multiple evaluation measures. The predictions in multivariate time-series models were found to be more accurate, with RMSE less than 0.84 mm per month, R-squared more than 0.8, and MAPE less than 0.25. Therefore, we conclude that the temperature and precipitation of the UCRB increases the accuracy of the predictions. Ultimately, we found that multivariate RFR performs the best among four models and is generalizable to other rivers in the UCRB. 
    more » « less
  4. null (Ed.)
    Basin-centric long short-term memory (LSTM) network models have recently been shown to be an exceptionally powerful tool for stream temperature (Ts) temporal prediction (training in one period and making predictions for another period at the same sites). However, spatial extrapolation is a well-known challenge to modeling Ts and it is uncertain how an LSTM-based daily Ts model will perform in unmonitored or dammed basins. Here we compiled a new benchmark dataset consisting of >400 basins across the contiguous United States in different data availability groups (DAG, meaning the daily sampling frequency) with or without major dams and studied how to assemble suitable training datasets for predictions in basins with or without temperature monitoring. For prediction in unmonitored basins (PUB), LSTM produced an RMSE of 1.129 °C and R2 of 0.983. While these metrics declined from LSTM's temporal prediction performance, they far surpassed traditional models' PUB values, and were competitive with traditional models' temporal prediction on calibrated sites. Even for unmonitored basins with major reservoirs, we obtained a median RMSE of 1.202°C and an R2 of 0.984. For temporal prediction, the most suitable training set was the matching DAG that the basin could be grouped into, e.g., the 60% DAG for a basin with 61% data availability. However, for PUB, a training dataset including all basins with data is consistently preferred. An input-selection ensemble moderately mitigated attribute overfitting. Our results indicate there are influential latent processes not sufficiently described by the inputs (e.g., geology, wetland covers), but temporal fluctuations are well predictable, and LSTM appears to be a highly accurate Ts modeling tool even for spatial extrapolation. 
    more » « less
  5. Demeniconi, Carlotta ; Davidson, Ian (Ed.)
    This paper proposes a physics-guided machine learning approach that combines machine learning models and physics-based models to improve the prediction of water flow and temperature in river networks. We first build a recurrent graph network model to capture the interactions among multiple segments in the river network. Then we transfer knowledge from physics-based models to guide the learning of the machine learning model. We also propose a new loss function that balances the performance over different river segments. We demonstrate the effectiveness of the proposed method in predicting temperature and streamflow in a subset of the Delaware River Basin. In particular, the proposed method has brought a 33%/14% accuracy improvement over the state-of-the-art physics-based model and 24%/14% over traditional machine learning models (e.g., LSTM) in temperature/streamflow prediction using very sparse (0.1%) training data. The proposed method has also been shown to produce better performance when generalized to different seasons or river segments with different streamflow ranges. 
    more » « less