skip to main content


Title: Formation of condensable organic vapors from anthropogenic and biogenic volatile organic compounds (VOCs) is strongly perturbed by NO<sub><i>x</i></sub> in eastern China
Abstract. Oxygenated organic molecules (OOMs) are the crucial intermediates linkingvolatile organic compounds (VOCs) to secondary organic aerosols (SOAs) in theatmosphere, but comprehensive understanding of the characteristics of OOMsand their formation from VOCs is still missing. Ambient observations ofOOMs using recently developed mass spectrometry techniques are stilllimited, especially in polluted urban atmospheres where VOCs and oxidants areextremely variable and complex. Here, we investigate OOMs, measured by anitrate-ion-based chemical ionization mass spectrometer at Nanjing ineastern China, through performing positive matrix factorization on binnedmass spectra (binPMF). The binPMF analysis reveals three factors aboutanthropogenic VOC (AVOC) daytime chemistry, three isoprene-relatedfactors, three factors about biogenic VOC (BVOC) nighttime chemistry, andthree factors about nitrated phenols. All factors are influenced by NOxin different ways and to different extents. Over 1000 non-nitro moleculeshave been identified and then reconstructed from the selected solution ofbinPMF, and about 72 % of the total signals are contributed bynitrogen-containing OOMs, mostly regarded as organic nitrates formed throughperoxy radicals terminated by nitric oxide or nitrate-radical-initiatedoxidations. Moreover, multi-nitrates account for about 24 % of the totalsignals, indicating the significant presence of multiple generations,especially for isoprene (e.g., C5H10O8N2 andC5H9O10N3). Additionally, the distribution of OOMconcentration on the carbon number confirms their precursors are driven by AVOCsmixed with enhanced BVOCs during summer. Our results highlight the decisiverole of NOx in OOM formation in densely populated areas, and we encouragemore studies on the dramatic interactions between anthropogenic and biogenicemissions.  more » « less
Award ID(s):
1807530
NSF-PAR ID:
10311504
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
19
ISSN:
1680-7324
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polyolefinic monoterpenes represent a potentially important but understudied source of organic nitrates (ONs) and secondary organic aerosol (SOA) following oxidation due to their high reactivity and propensity for multi-stage chemistry. Recent modeling work suggests that the oxidation of polyolefinic γ-terpinene can be the dominant source of nighttime ON in a mixed forest environment. However, the ON yields, aerosol partitioning behavior, and SOA yields from γ-terpinene oxidation by the nitrate radical (NO3), an important nighttime oxidant, have not been determined experimentally. In this work, we present a comprehensive experimental investigation of the total (gas + particle) ON, hydroxy nitrate, and SOA yields following γ-terpinene oxidation by NO3. Under dry conditions, the hydroxy nitrate yield  =  4(+1/−3) %, total ON yield  =  14(+3/−2) %, and SOA yield  ≤  10 % under atmospherically relevant particle mass loadings, similar to those for α-pinene + NO3. Using a chemical box model, we show that the measured concentrations of NO2 and γ-terpinene hydroxy nitrates can be reliably simulated from α-pinene + NO3 chemistry. This suggests that NO3 addition to either of the two internal double bonds of γ-terpinene primarily decomposes forming a relatively volatile keto-aldehyde, reconciling the small SOA yield observed here and for other internal olefinic terpenes. Based on aerosol partitioning analysis and identification of speciated particle-phase ON applying high-resolution liquid chromatography–mass spectrometry, we estimate that a significant fraction of the particle-phase ON has the hydroxy nitrate moiety. This work greatly contributes to our understanding of ON and SOA formation from polyolefin monoterpene oxidation, which could be important in the northern continental US and the Midwest, where polyolefinic monoterpene emissions are greatest. 
    more » « less
  2. Abstract. The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber (GTEC) facility. Aerosol yields are determined for experiments performed under both dry (relative humidity (RH) < 2 %) and humid (RH = 50 % and RH = 70 %) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231, and 245 amu, which likely correspond to molecular formulas of C10H17NO4, C10H15NO5, C10H17NO5, and C10H15NO6, respectively) are detected by chemical ionization mass spectrometry (CIMS) and their formation mechanisms are proposed. The NO+ (at m/z 30) and NO2+ (at m/z 46) ions contribute about 11 % to the combined organics and nitrate signals in the typical aerosol mass spectrum, with the NO+ : NO2+ ratio ranging from 4.8 to 10.2 in all experiments conducted. The SOA yields in the "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are comparable. For a wide range of organic mass loadings (5.1–216.1 μg m&minus;3), the aerosol mass yield is calculated to be 27.0–104.1 %. Although humidity does not appear to affect SOA yields, there is evidence of particle-phase hydrolysis of organic nitrates, which are estimated to compose 45–74 % of the organic aerosol. The extent of organic nitrate hydrolysis is significantly lower than that observed in previous studies on photooxidation of volatile organic compounds in the presence of NOx. It is estimated that about 90 and 10 % of the organic nitrates formed from the β-pinene+NO3 reaction are primary organic nitrates and tertiary organic nitrates, respectively. While the primary organic nitrates do not appear to hydrolyze, the tertiary organic nitrates undergo hydrolysis with a lifetime of 3–4.5 h. Results from this laboratory chamber study provide the fundamental data to evaluate the contributions of monoterpene + NO3 reaction to ambient organic aerosol measured in the southeastern United States, including the Southern Oxidant and Aerosol Study (SOAS) and the Southeastern Center for Air Pollution and Epidemiology (SCAPE) study.

     
    more » « less
  3. Gas-phase oxygenated organic molecules (OOMs) can contribute significantly to both atmospheric new particle growth and secondary organic aerosol formation. Precursor apportionment of atmospheric OOMs connects them with volatile organic compounds (VOCs). Since atmospheric OOMs are often highly functionalized products of multistep reactions, it is challenging to reveal the complete mapping relationships between OOMs and their precursors. In this study, we demonstrate that the machine learning method is useful in attributing atmospheric OOMs to their precursors using several chemical indicators, such as O/C ratio and H/C ratio. The model is trained and tested using data acquired in controlled laboratory experiments, covering the oxidation products of four main types of VOCs (isoprene, monoterpenes, aliphatics, and aromatics). Then, the model is used for analyzing atmospheric OOMs measured in both urban Beijing and a boreal forest environment in southern Finland. The results suggest that atmospheric OOMs in these two environments can be reasonably assigned to their precursors. Beijing is an anthropogenic VOC dominated environment with ∼64% aromatic and aliphatic OOMs, and the other boreal forested area has ∼76% monoterpene OOMs. This pilot study shows that machine learning can be a promising tool in atmospheric chemistry for connecting the dots. 
    more » « less
  4. Abstract. Secondary organic aerosols (SOA) are major components of atmospheric fineparticulate matter, affecting climate and air quality. Mounting evidenceexists that SOA can adopt glassy and viscous semisolid states, impactingformation and partitioning of SOA. In this study, we apply the GECKO-A(Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere)model to conduct explicit chemical modeling of isoprene photooxidation andα-pinene ozonolysis and their subsequent SOA formation. The detailedgas-phase chemical schemes from GECKO-A are implemented into a box model andcoupled to our recently developed glass transition temperatureparameterizations, allowing us to predict SOA viscosity. The effects ofchemical composition, relative humidity, mass loadings and mass accommodation on particle viscosity are investigated in comparison withmeasurements of SOA viscosity. The simulated viscosity of isoprene SOAagrees well with viscosity measurements as a function of relative humidity,while the model underestimates viscosity of α-pinene SOA by a feworders of magnitude. This difference may be due to missing processes in themodel, including autoxidation and particle-phase reactions, leading to theformation of high-molar-mass compounds that would increase particleviscosity. Additional simulations imply that kinetic limitations of bulkdiffusion and reduction in mass accommodation coefficient may play a role inenhancing particle viscosity by suppressing condensation of semi-volatilecompounds. The developed model is a useful tool for analysis andinvestigation of the interplay among gas-phase reactions, particle chemicalcomposition and SOA phase state. 
    more » « less
  5. null (Ed.)
    Abstract. Reactions of the hydroxyl (OH) and peroxy (HO2 and RO2) radicals playa central role in the chemistry of the atmosphere. In addition to controlling the lifetimes ofmany trace gases important to issues of global climate change, OH radical reactionsinitiate the oxidation of volatile organic compounds (VOCs) which can lead to the production ofozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicalsin forest environments characterized by high mixing ratios of isoprene and low mixing ratios ofnitrogen oxides (NOx) (typically less than 1–2 ppb) have shown seriousdiscrepancies with modeled concentrations. These results bring into question our understanding ofthe atmospheric chemistry of isoprene and other biogenic VOCs under low NOxconditions. During the summer of 2015, OH and HO2 radical concentrations, as well as totalOH reactivity, were measured using laser-induced fluorescence–fluorescence assay by gasexpansion (LIF-FAGE) techniques as part of the Indiana Radical Reactivity and Ozone productioN InterComparison (IRRONIC). This campaign took place in a forested area near Indiana University's Bloomington campus which is characterized by high mixing ratios of isoprene (average daily maximum ofapproximately 4 ppb at 28 ∘C) and low mixing ratios of NO (diurnal averageof approximately 170 ppt). Supporting measurements of photolysis rates, VOCs,NOx, and other species were used to constrain a zero-dimensional box model basedon the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM 3.2),including versions of the Leuven isoprene mechanism (LIM1) for HOx regeneration(RACM2-LIM1 and MCM 3.3.1). Using an OH chemical scavenger technique, the study revealed thepresence of an interference with the LIF-FAGE measurements of OH that increased with bothambient concentrations of ozone and temperature with an average daytime maximum equivalentOH concentration of approximately 5×106 cm−3. Subtraction of theinterference resulted in measured OH concentrations of approximately4×106 cm−3 (average daytime maximum) that were in better agreement with modelpredictions although the models underestimated the measurements in the evening. The addition ofversions of the LIM1 mechanism increased the base RACM2 and MCM 3.2 modeled OH concentrationsby approximately 20 % and 13 %, respectively, with the RACM2-LIM1 mechanism providing thebest agreement with the measured concentrations, predicting maximum daily OH concentrationsto within 30 % of the measured concentrations. Measurements of HO2 concentrationsduring the campaign (approximately a 1×109 cm−3 average daytime maximum)included a fraction of isoprene-based peroxy radicals(HO2*=HO2+αRO2) and were found to agree with modelpredictions to within 10 %–30 %. On average, the measured reactivity was consistent with thatcalculated from measured OH sinks to within 20 %, with modeled oxidation productsaccounting for the missing reactivity, however significant missing reactivity (approximately40 % of the total measured reactivity) was observed on some days. 
    more » « less