skip to main content

Title: Viscoelastic effects in circular edge waves
Surface waves are excited at the boundary of a mechanically vibrated cylindrical container and are referred to as edge waves. Resonant waves are considered, which are formed by a travelling wave formed at the edge and constructively interfering with its centre reflection. These waves exhibit an axisymmetric spatial structure defined by the mode number $n$ . Viscoelastic effects are investigated using two materials with tunable properties; (i) glycerol/water mixtures (viscosity) and (ii) agarose gels (elasticity). Long-exposure white-light imaging is used to quantify the magnitude of the wave slope from which frequency-response diagrams are obtained via frequency sweeps. Resonance peaks and bandwidths are identified. These results show that for a given $n$ , the resonance frequency decreases with viscosity and increases with elasticity. The amplitude of the resonance peaks are much lower for gels and decrease further with mode number, indicating that much larger driving amplitudes are needed to overcome the elasticity and excite edge waves. The natural frequencies for a viscoelastic fluid in a cylindrical container with a pinned contact-line are computed from a theoretical model that depends upon the dimensionless Ohnesorge number ${Oh}$ , elastocapillary number ${Ec}$ and Bond number ${Bo}$ . All show good agreement with experimental observations. more » The eigenvalue problem is equivalent to the classic damped-driven oscillator model on linear operators with viscosity appearing as a damping force and elasticity and surface tension as restorative forces, consistent with our physical interpretation of these viscoelastic effects. « less
Authors:
; ; ;
Award ID(s):
1935590 1750208
Publication Date:
NSF-PAR ID:
10311618
Journal Name:
Journal of Fluid Mechanics
Volume:
919
ISSN:
0022-1120
Sponsoring Org:
National Science Foundation
More Like this
  1. Surface waves are excited by mechanical vibration of a cylindrical container having an air/water interface pinned at the rim, and the dynamics of pattern formation is analysed from both an experimental and theoretical perspective. The wave conforms to the geometry of the container and its spatial structure is described by the mode number pair ( $n,\ell$ ) that is identified by long exposure time white light imaging. A laser light system is used to detect the surface wave frequency, which exhibits either a (i) harmonic response for low driving amplitude edge waves or (ii) sub-harmonic response for driving amplitude above the Faraday wave threshold. The first 50 resonant modes are discovered. Control of the meniscus geometry is used to great effect. Specifically, when flat, edge waves are suppressed and only Faraday waves are observed. For a concave meniscus, edge waves are observed and, at higher amplitudes, Faraday waves appear as well, leading to complicated mode mixing. Theoretical predictions for the natural frequency of surface oscillations for an inviscid liquid in a cylindrical container with a pinned contact line are made using the Rayleigh–Ritz procedure and are in excellent agreement with experimental results.
  2. Colloidal gels represent an important class of soft matter, in which networks formed due to strong, short-range interactions display solid-like mechanical properties, such as a finite low-frequency elastic modulus. Here we examine the effect of embedded active colloids on the linear viscoelastic moduli of fractal cluster colloidal gels. We find that the autonomous, out-of-equilibrium dynamics of active colloids incorporated into the colloidal network decreases gel elasticity, in contrast to observed stiffening effects of myosin motors in actin networks. Fractal cluster gels are formed by the well-known mechanism of aggregating polystyrene colloids through addition of divalent electrolyte. Active Janus particles with a platinum hemisphere are created from the same polystyrene colloids and homogeneously embedded in the gels at dilute concentration at the time of aggregation. Upon addition of hydrogen peroxide – a fuel that drives the diffusiophoretic motion of the embedded Janus particles – the microdynamics and mechanical rheology change in proportion to the concentration of hydrogen peroxide and the number of active colloids. We propose a theoretical explanation of this effect in which the decrease in modulus is mediated by active motion-induced softening of the inter-particle attraction. Furthermore, we characterize the failure of the fluctuation–dissipation theorem in the active gelsmore »by identifying a discrepancy between the frequency-dependent macroscopic viscoelastic moduli and the values predicted by microrheology from measurement of the gel microdynamics. These findings support efforts to engineer gels for autonomous function by tuning the microscopic dynamics of embedded active particles. Such reconfigurable gels, with multi-state mechanical properties, could find application in materials such as paints and coatings, pharmaceuticals, self-healing materials, and soft robotics.« less
  3. Abstract

    A soft viscoelastic drop has dynamics governed by the balance between surface tension, viscosity, and elasticity, with the material rheology often being frequency dependent, which are utilized in bioprinting technologies for tissue engineering and drop-deposition processes for splash suppression. We study the free and forced oscillations of a soft viscoelastic drop deriving (1) the dispersion relationship for free oscillations, and (2) the frequency response for forced oscillations, of a soft material with arbitrary rheology. We then restrict our analysis to the classical cases of a Kelvin–Voigt and Maxwell model, which are relevant to soft gels and polymer fluids, respectively. We compute the complex frequencies, which are characterized by an oscillation frequency and decay rate, as they depend upon the dimensionless elastocapillary and Deborah numbers and map the boundary between regions of underdamped and overdamped motions. We conclude by illustrating how our theoretical predictions for the frequency-response diagram could be used in conjunction with drop-oscillation experiments as a “drop vibration rheometer”, suggesting future experiments using either ultrasonic levitation or a microgravity environment.

  4. Abstract It has been suggested that ion foreshock waves originating in the solar wind upstream of the quasi-parallel ( Q -||) shock can impact the planetary magnetosphere leading to standing shear Alfvén waves, i.e., the field line resonances (FLRs). In this paper, we carry out simulations of interaction between the solar wind and terrestrial magnetosphere under radial interplanetary magnetic field conditions by using a 3-D global hybrid model, and show the properties of self-consistently generated field line resonances through direct mode conversion in magnetospheric response to the foreshock disturbances for the first time. The simulation results show that the foreshock disturbances from the Q -|| shock can excite magnetospheric ultralow-frequency waves, among which the toroidal Alfvén waves are examined. It is found that the foreshock wave spectrum covers a wide frequency range and matches the band of FLR harmonics after excluding the Doppler shift effects. The fundamental harmonic of field line resonances dominates and has the strongest wave power, and the higher the harmonic order, the weaker the corresponding wave power. The nodes and anti-nodes of the odd and even harmonics in the equatorial plane are also presented. In addition, as the local Alfvén speed increases earthward, the corresponding frequency ofmore »each harmonic increases. The field-aligned current in the cusp region indicative of the possibly observable aurora is found to be a result of magnetopause perturbation which is caused by the foreshock disturbances, and a global view substantiating this scenario is given. Finally, it is found that when the solar wind Mach number decreases, the strength of both field line resonance and field-aligned current decreases accordingly.« less
  5. A part of the Southern Ocean, the Ross Sea, together with the Ross Ice Shelf and the atmosphere over the region represent a coupled system with respect to the low-frequency (with the periods longer than 1 hour) wave processes observed in the three media. We study interconnections between them using a unique combination of geophysical sensors: hydrophones measuring pressure variations on the bottom of the open ocean, seismographs measuring vertical displacements of the surface of the Ross Ice Shelf, and the Jang Bogo Dynasonde system measuring wave parameters at the altitudes of the lower thermosphere. Analysis of a year-long data sets from Ross Ice Shelf-based instruments reveals presence in their average power spectra of the peaks in the 2-11 hours period range that may be associated with the low-order resonance vibrations of the system. More harmonics of the 24 hour tide (seven) are detected by the RIS seismographs compared to the sea floor sensor (where only two are clearly visible). This may be a consequence of the RIS resonance-related broadband amplification effect predicted by our model. There are several peaks in the RIS vibration spectrum (T = 8.37, 8.23, 6.3 and 6.12 hours) that are not detected by the hydrophonemore »and may be directly related to RIS resonances. The prominent T = 25.81 hour peak is a likely candidate for the sub-inertial RIS resonance. The periods of lower RIS resonance modes predicted by our simple model and the observed spectral peaks are in the same general band. This is the first direct observation of the resonance effects in vibrations of the Ross Ice Shelf. Our results demonstrate the key role of the resonances of the Ross Ice Shelf in maintaining the wave activity in the entire coupled system. We suggest that the ocean tide is a major source of excitation of the Ross Ice Shelf’s resonances. The ice shelf vibrations may also be supported by the energy transfer from wind, swell, and infragravity wave energy that couples with the ice shelf. Overlapping 6-month-long data sets reveal a significant linear correlation between the spectra of the vertical shifts of the Ross Ice Shelf and of the thermospheric waves with the periods of about 2.1, 3.7, and 11.1 hours. This result corroborates earlier lidar observations of persistent atmospheric wave activity over McMurdo. We propose a theory that quantifies the nexus between the ocean tide and the resonance vibrations of the Ross Ice Shelf. It complements the theoretical model of the process of generating the atmospheric waves by the resonance vibrations of the Ross Ice Shelf published by us earlier.« less